

Universidad Politécnica de Valencia

Departamento de Sistemas Informáticos y Computación

A Compiler for the Automatic Generation Of the Distribution Aspect To Distributed
Aplications

“COMPILADOR PARA LA GENERACIÓN AUTOMÁTICA DEL ASPECTO DE
DISTRIBUCION A APLICACIONES DISTRIBUIDAS”

Programa de Doctorado: Programación Declarativa e Ingeniería de la Programación

Nour Ali

Dirigido por: Dr. Isidro Ramos Salavert
Dr. Jose Ángel Carsí Cubel

Valencia, Septiembre 2004

ABSTRACT

This research work presents a manual compiler for generating distributed and mobile

applications from the PRISMA distribution model. The MDA proposal is applied to our PRISMA

distribution Model. The steps of the proposal have been followed. First, a Platform Specific

Model (PSM) of the PRISMA distribution model in C# .Net is presented. The PSM is presented

by discussing the Attachments, Bindings and Mobility Specific Model in C# by showing their

logical diagrams. Then, the implementation patterns for generating distributed application in C#

from the PRISMA distribution model are identified. At this level, the PRISMA distribution model

is implemented in C#. Some predefined classes that form the middleware have been

necessary to create PRISMA distribution applications.

Keywords: distributed systems, architectural models, aspect-oriented software

development (AOSD), automatic code generation, MDA, transformation patterns, middlewares.

4

ACKNOWLEDGMENTS

To my parents, for their love, care and encouragement.

 To my brother and sisters, Mohamed, Majd and Dana, and to all my Family

To Isidro, for accepting me as a student,

To Pepe, for his comments and advisments

To Jenny for being a marvellous work partner and most of all,

 For being a friend, You are very special, I am glad to meet you.

To the best programming guys,

Jose, Cristobal and Rafa, Keep working hard!

To Microsoft Research,

For financing this work.

To my friends, I miss you so much.

6

7

TABLE OF CONTENTS

Table of Contents... 7

LIST of Figures ... 9

Chapter 1. INTRODUCTION ... 11
1.1 Research Objectives... 13
1.2 Structure of the Document.. 13

Chapter 2. FUNDAMENTALS AND RELATED WORK...................................... 15
2.1 Model Driven Architectures (MDA) .. 16
2.2 Middleware... 18
2.3 Framework ... 19
2.4 Mobility... 20
2.5 Distributed Technologies... 21

2.5.1 Comparison between ASP.Net Web Services and .Net Remoting22
Chapter 3. TRANSFORMING PRISMA DISTRIBUTION MODEL to C# and
.NET REMOTING... 25

3.1 Introduction.. 26
3.2 Platform Specific Model of the PRISMA Distribution Model in C# .Net........... 27

3.2.1 loc Data type Specific Model ...29
3.2.2 Distribution Aspect Specific Model ...30
3.2.3 Attachments Specific Model...31
3.2.4 Bindings Specific Model in C#...33
3.2.5 Mobility Specific Model in C# ...36

3.3 Implementation Patterns... 38
3.3.1 loc Data Type. ..38
3.3.2 Distribution Aspect...42
3.3.3 Distribution Aspect with Service move(). ..45
3.3.4 Attachments. ...50
3.3.5 Bindings..58

Chapter 4. CONCLUSIONS AND FUTURE WORKS .. 69

8

4.1 Summary of the Contributions ... 70
4.2 Related Publications .. 70
4.3 Further Work... 71

Bibliography... 73

Appendix A : PRISMA MAPPINGS TO C#... 77

Appendix B: Implementation of a Simple Bank Account using the PRISMA
Distribution Model in C#... 81

B.1 Distribution Aspect of an Account.. 81
B.2 Attachments of the Bank System .. 83
B.3 Bindings of the Bank System Example... 88

9

LIST OF FIGURES

FIGURE 1 SOSY MODELER® AUTOMATIC GENERATION... 12
FIGURE 2 COMPLEX LIFE CYCLE... 16
FIGURE 3 OMG’S MODEL DRIVEN ARCHITECTURE.. 17
FIGURE 4 MODEL TRANSFORMATIONS IN MDA ... 17
FIGURE 5 MIDDLEWARE .. 18
FIGURE 6 FRAMEWORK ARCHITECTURE ... 20
FIGURE 7 PICCO’S CLASSIFICATION OF MIGRATION ... 21
FIGURE 8 .NET REMOTING ARCHITECTURE .. 22
FIGURE 9 WEB SERVICES ARCHITECTURE .. 23
FIGURE 10 COMPARING ASP .NET WEB SERVICES WITH .NET REMOTING 24
FIGURE 11 USING MDA TO GENERATE PRISMA DISTRIBUTED APPLICATIONS IN C# .NET....... 26
FIGURE 12 PRISMA MIDDLEWARE... 27
FIGURE 13 SET OF CONSTRUCTS OF THE PRISMA MIDDLEWARE .. 28
FIGURE 14 PRISMA MIDDLEWARE RUNNING ON EACH MACHINE TO ENABLE A

DISTRIBUTION MODEL... 28
FIGURE 15 MAPPINGS BETWEEN THE PRISMA DISTRIBUTION MODEL AND C#. 29
FIGURE 16 THE LOC DATA TYPE. ... 30
FIGURE 17 THE DISTRIBUTION ASPECT LOGICAL VIEW. ... 30
FIGURE 18 THE DISTRIBUTION ASPECT WITH A MOVE SERVICE. .. 31
FIGURE 16 LOGICAL VIEW OF PRISMA ATTACHMENTS... 32
FIGURE 17 AN INTERACTION DIAGRAM OF THE ATTACHMENTS... 33
FIGURE 18 LOGICAL VIEW OF A BINDING IMPLEMENTED IN C# ... 35
FIGURE 19 AN INTERACTION DIAGRAM OF THE BINDINGS.. 36
FIGURE 20 AN INTERACTION DIAGRAM OF THE MOBILITY PROCESS... 37
FIGURE 21 GENERIC USE OF LOC... 39
FIGURE 22 A DISTRIBUTION ASPECT IS ASSOCIATED WITH CLASS LOC 40
FIGURE 23 A DISTRIBUTIONASPECTBASE IS IMPLEMENTED THAT IS SPECIALIZED FROM

ASPECTBASE... 43
FIGURE 24 A EXTMBILE DISTRIBUTION ASPECT HAS TO INHERIT FROM THE

DISTRIBUTIONASPECTBASE.. 44
FIGURE 25 A MOBILEDISTRIBUTIONASPECT IS IMPLEMENTED THAT IS SPECIALIZED FROM

DISTRIBUTIONASPECTBASE ... 47
FIGURE 26 A EXTMBILE DISTRIBUTION ASPECT HAS TO INHERIT FROM THE

DISTRIBUTIONASPECTBASE.. 48
FIGURE 27 THE GENERATION OF A PRISMA ATTACHMENT IN C#. .. 51

10

FIGURE 28 A PRISMA ATTACHMENT GENERATING FOUR CLASSES: TWO INHERITING FROM
ATTACHMENTCLIENTBASE AND TWO INHERITING FROM ATTACHMENTSERVERBASE. 52

FIGURE 29 A DIAGRAM WHICH EXPLAINS THE RESULT OF THE EXAMPLE OF FIGURE 28............ 53
FIGURE 30 THE GENERATION OF A PRISMA BINDING FOR AN ARCHITECTURAL ELEMENT

CONTAINED IN A SYSTEM IN C#. ... 60
FIGURE 31 A BINDING PART OF AN ARCHITECTURAL ELEMENT CONTAINED IN A SYSTEM

GENERATED BY TWO CLASSES: ONE INHERITING FROM COMPONENTBINDINGCLIENTBASE
AND ANOTHER INHERITING FROM COMPONENTBINDINGSERVERBASE. 61

11

CHAPTER 1. INTRODUCTION

12

Nowadays, information systems are large and complex to develop. An important factor

that influences in this complexity is that information systems are tending to be distributed with

mobile components. Many technologies have emerged in dealing with distribution issues at an

implementation level. On the other hand, few approaches have dealt with distribution at a high

abstraction level. Nevertheless, considering distribution in the whole life cycle of software

development minimizes time and costs. Thus, efforts are reduced in the development process

by taking into account distribution at an early phase, instead of only introducing it at the

implementation phase.

Actually, many CASE tools are able to generate applications following the automatic

prototyping paradigm which was proposed by Balzer [6]. They are called model compilers and

are able to automatically generate applications from conceptual models. This generation can be

a complete generation as in Oblog Case [23] and Sosy Modeler® (OO-Method/CASE [18]), or

partial, like Rational Rose [22]. Specifically, Sosy Modeler® (OO-Method/CASE) generates

aplications with a three layered architecture (presentation, business logic and persistence) and

uses OASIS as a specification language (See Figure 1). During the last decade, the research

efforts were dedicated to formalize the models to automatically generate applications mainly

using the object oriented paradigm such as Oblog [17] or Troll [14].

 OASIS Object Oriented
Conceptual Schema

Sosy Modeler®
Automatic
Generation

DB
Application

Code

Figure 1 Sosy Modeler® Automatic Generation

As a consequence of the poor capability of the object-oriented software development to

describe complex structures of distributed information systems emerged the Component-

Based Software Development (CBSD) [26] [4] and the Aspect-Oriented Software Development

(AOSD) [4] have emerged. The CBSD promises to control the complexity of system

construction by coupling entities that provide specific services. The AOSD allows separation of

concerns by modularizing crosscutting concerns in a separate entity: the aspect. Aspects can

be reused and manipulated independently of the rest of properties of the system. However,

currently no model compilers exist that combine the CBSD and AOSD to generate distributed

applications.

13

In previous works as in [2] [3][1], a distribution model for the architectural model PRISMA

[19] was proposed using the AOSD and CBSD. This work, presents the implementation of this

model in C# .Net Remoting [21] and some code generation patterns.

In this chapter, the objectives of the research work are introduced in Section 1.1, and the

structure of the document is presented in Section 1.2.

1.1 Research Objectives

The objective of this research work is to identify the transformation patterns that allow the

automatic code generation of C# .Net from the PRISMA distribution model previously

presented in other works [1] [3] .

The MDA proposal [15] [24] of identifying transformation patterns (technology patterns

and implementation patterns) for generating code from a platform independent model (PIM) is

used. First the platform specific PRISMA distribution model in C# is going to be described by

showing the logical diagrams that form it. Then the implementation patterns that indicate which

classes of the platform specific model are to be extended to generate distributed C#

applications of the PRISMA distribution model are identified.

In the future, the PRISMA architectural model is pretended to become a framework that

permits the automatic generation of distributed information systems.

1.2 Structure of the Document

This work is divided into four chapters and two appendixes. In the following the content of

each of the chapters is briefly described:

Chapter 2 presents some fundamentals and related work to ours. The fundamentals

presented in this chapter are necessary to understand the research work. The MDA proposal,

the concept of a middleware, framework and mobility are presented. In addition, a comparison

between ASP.Net Web Services and .Net Remoting is presented.

Chapter 3 introduces how the MDA proposal is applied to our PRISMA distribution Model.

The steps of the proposal have been followed. First, a Platform Specific Model (PSM) of the

PRISMA distribution model in C# .Net is presented. The PSM is presented by discussing the

Attachments, Bindings and Mobility Specific Model in C# by showing their logical diagrams.

Then, the implementation patterns for generating distributed application in C# from the

PRISMA distribution model are identified. At this level, the PRISMA distribution model is

implemented in C#. Some predefined classes that form the middleware have been necessary

to create PRISMA distribution applications.

Chapter 4 sums up the main contributions of the work and suggest some future works.

14

Appendix A shows the mappings of the whole PRISMA architectural model to C#.Net.

This appendix has been included to facilitate to the user the readability of the document.

Appendix B shows the code of an implemented Bank system example in C# using the

PRISMA distribution model.

15

CHAPTER 2. FUNDAMENTALS AND
RELATED WORK

16

2.1 Model Driven Architectures (MDA)

Nowadays, the software life cycle is very complex, facing a problem named the

integration problem. This problem occurs due to that information systems are very large and

need to integrate many tools and middlewares. Model Driven Architecture (MDA) [15][24] is an

Object Management Group (OMG) standard for model-based application architectures. MDA

tries to solve the integration problem encountered in today’s development process (see Figure

2). MDA defines an approach to information technology specification that separates the

specification of system functionality from the specification of the implementation of that

functionality on a specific technology platform. To this end, the MDA defines an architecture for

models that provides a set of guidelines for structuring specifications expressed as models.

Figure 2 Complex Life Cycle

MDA (see Figure 3) is a software architecture based on modelling at different levels. Its

core is a technology-independent definition of the distributed enterprise infrastructure built in

OMG’s Unified Modelling Language (UML) [29]. Using the UML model the running application

is automatically generated. The MDA promises:

-To improve productivity for architects

-To integrate what you’ve built, with what you’re building, with what you will build

in the future;

-To enhance portability and Interoperability.

17

-To remain flexible in the face of constantly changing infrastructure;

-To lengthen the usable lifetime of your software, lowering maintenance costs

Figure 3 OMG’s Model Driven Architecture

MDA based development enables to produce applications with different middleware

platforms from the same base model. All MDA development projects start with the creation of a

Platform Independent Model (PIM) (see Figure 4). The PIM expresses an application’s

fundamental business functionality and behaviour in a platform independent way. Then from

the same PIM the definition of a Platform Specific Model (PSM) for a certain target platform.

The PSM defines an application, based on a certain technology, but without any coding detail.

The PSM describes what is to be generated to implement the application. Next, as shown in

Figure 4 the code model defines the application actually implemented in code.

Figure 4 Model Transformations in MDA

18

To transform one model to elements in a lower model, transformation patterns are used.

Transformation patterns in MDA are classified into two categories: Technology Patterns and

Implementation Patterns. Technology Patterns map PIM’s to PSM’s for a specific technology

and application architecture. Implementation Patterns map PSM´s specifications to code.

An example of an MDA-based development environment is OptimalJ [10]. OptimalJ

enables the design, development, modification and deployment of J2EE business applications.

It blends models, patterns and application frameworks. OptimalJ generates working

applications directly from a visual model, using active synchronization to keep both model and

code synchronously during application development.

2.2 Middleware

A middleware is an intermediate layer that sits above a platform and below the

applications (see Figure 5). A platform is the set of services of an operating system and

networking programmes. This layer provides services which help in providing development and

run-time environment for distributed systems by making distribution transparent and solving

heterogeneity such as hardware, programming language and operating systems. These

middleware services are general purpose services defined by the application programming

interfaces (API’s) and protocols they support. They may have multiple implementations that

conform to their interfaces and protocols.

Figure 5 Middleware

Bernstein [7] describes properties for distinguishing middleware services from non-

middleware services. He describes middleware services as generic distributed services across

applications and industries that run on multiple platforms and support standard interfaces and

protocols. Middleware services are generic applications meeting the need of a variety of

applications across many industries having implementations that run on multiple platforms.

19

Thus, a middleware service should support a standard protocol such as TCP/IP. That way,

multiple implementations of the service can be developed and those implementations will

interoperate. Middleware services must be accessed remotely or enable others to be accessed

remotely. A middleware service is transparent with respect to an API to allow applications to

use the API without modification.

Middleware are classified into different kinds to serve different purposes. Some of these

kinds are the reflective, object-oriented, message-oriented and event-based middleware. The

reflective middleware is concerned with applying techniques from the field of reflection in order

to achieve flexibility and adaptability in middleware platforms. Event-based middleware is

concerned with the concepts, design, implementation, and application of services and

components that support building event-based systems. Object-oriented middleware extends

the object-oriented programming paradigm to distributed systems. Message-oriented

middleware is the natural extension of the packet paradigm of communications prevalent in the

lower layers of the OSI network model.

2.3 Framework

A framework is defined by Bernstein [7] as a software environment that is designed to

simplify application development and system management for a specialized domain. Bernstein

describes frameworks as kinds of abstract middlewares which sit on the middleware to simplify

their underlying middleware environment rather than directly accessing middleware services

(see Figure 6).

A framework is defined by an API, a user interface, a set of tools and may also have

framework-private services in addition to the ones that middleware environments offer. A

framework API simplifies the API’s of the underlying middleware. A framework API could be

simply an abstracted middleware API that maps the framework services to services of the

middleware or it could be different. When a framework API is different it can add framework-

private middleware services.

A framework includes tools which make the framework easier to use. Tools could be

editors, compilers, help facilities and software installation managers. A tool is part of the

framework if it is integrated through data. Mostly, frameworks contain a repository that is

shared by tools for analysis or design such as CASE frameworks.

20

Figure 6 Framework Architecture

2.4 Mobility

Mobility is the capability of moving a process, object or component instances from one

computing node to another during the runtime in a distributed system.

Mobility is classified by Picco [13] into weak and strong mobility. Weak mobility happens

in systems where the migrant is a data object which starts execution from the beginning after

migration. Weak mobility transfers the code which may be accompanied by some initialization

data, however the state is not involved. This kind of migration is well known in commercial

systems. Strong mobility occurs in mobile objects which their execution is interrupted for the

migration and once migrated on the destination carries forward executing from the interrupted

point. This form of mobility allows migration of both the code and the state of the object before

interrupting it.

Strong Mobility is supported by two mechanisms: migration and cloning. The migration

mechanism destroys the executing object and transmits it to the destination. Migration can be

proactive and reactive. In proactive migration, the decision of moving the object is done by

itself determining the time and destination. While in reactive migration the migration decision is

determined by another executing object. The cloning mechanism creates a copy of the

executing object at the new destination without destroying the executing object. As in

migration, cloning can be proactive and reactive.

Weak mobility’s mechanisms are influenced on the direction of code transfer, the type of

code and the time the code is executed at the destination. The code can be migrated as a

standalone or as a code fragment. Standalone code is self-contained and will be used to

21

instantiate a new object on the destination. A code fragment must be connected to an already

running code. Mechanisms that support weak mobility can be either synchronous and

asynchronous. Figure 7, summarizes Picco’s classification of migration.

Code Fragment

Migration

Strong Mobility
Weak Mobility

Migration Cloning

Proactive Proactive ReactiveReactive

Code Shipping Code Fetching

Stand-alone Code Fragment

Stand-alone Code FragmentCode Fragment

Migration

Strong Mobility
Weak Mobility

Migration Cloning

Proactive Proactive ReactiveReactive

Code Shipping Code Fetching

Stand-alone Code Fragment

Stand-alone

MigrationMigration

Strong MobilityStrong Mobility
Weak MobilityWeak Mobility

MigrationMigration CloningCloning

ProactiveProactive ProactiveProactive ReactiveReactiveReactiveReactive

Code ShippingCode Shipping Code FetchingCode Fetching

Stand-aloneStand-alone Code FragmentCode Fragment

Stand-aloneStand-alone
Figure 7 Picco’s classification of Migration

Migration is not totally supported by today’s middleware technologies. Therefore, different

proposals have been done to extend the frameworks. The work in [27] describes the

integration of a migration facility into the .Net Framework. Using aspect-techniques for

integrating migration into .NET addresses non-functional system properties on the middleware

level, without the need to manipulate lower system layers like the operating system itself.

2.5 Distributed Technologies.

Nowadays, distributed systems are built using distributed object or component

middleware. The role of middleware is to ease the task of programming and managing

distributed applications. It is a is a distributed software layer, or ‘platform’ which abstracts over

the complexity and heterogeneity of the underlying distributed environment with its multitude of

network technologies, machine architectures, operating systems and programming languages.

In the following a brief explanation of the most recent proposals using middlewares are

presented:

• OMG’s CORBA [9] is an object based middleware which offers an interface

definition language (IDL) and an object request broker (ORB). The IDL specifies

the interfaces among the CORBA objects. The IDL is used to abstract over the

fact that objects can be implemented in any suitable programming language. In

addition, the IDL is responsible to ensure that data is correctly interchanged

among the different programming languages. The ORB is responsible for

22

transparently directing method invocations to the appropriate target object, and a

set of services (e.g. naming, time, transactions, replication etc.)

• Microsoft® .NET Remoting [16][21] provides a framework that allows objects to

interact with one another across application domains. The framework provides a

number of services, including activation and lifetime support, as well as

communication channels responsible for transporting messages to and from

remote applications. The framework can be extended to achieve what is required.

• Web Services [30] typically use SOAP for the message format and require that

you use IIS for the HTTP message transport. This makes Web services good for

communication over the Internet, and for communication between non-Windows

systems. Web services are a good choice for message-oriented services that

must support a wide range of client platforms and a potentially heavy load.

2.5.1 Comparison between ASP.Net Web Services and .Net
Remoting

This section is essential for this work to determine which most adequate technology to

choose to implement our model. We are interested in implementing our model in a .Net

technology. Therefore, we have to choose either ASP.Net Web Services or .Net Remoting. To

do this study we have depended on the following works: [11], [12] , [25] and [28].

The .Net Remoting Architecture consists of the proxy, formatter and a transport channel

on each application domain (see Figure 8). The proxy receives the call from a client, encodes

the message using an appropriate formatter, then sends the call over the channel to the server

process. A listening channel on the server application domain picks up the request and

forwards it to the server remoting system, which locates and invokes the methods on the

requested object. Once the execution is completed, the process is reversed and the results are

returned back to the client.

Figure 8 .Net Remoting Architecture

23

In the Web Services architecture (see Figure 9) the client proxy receives the request from

the client, serializes the request into a SOAP which is then forwarded to the remote Web

service. The remote Web service receives the SOAP request, executes the method, and sends

the results in the form of a SOAP response to the client proxy, which deserializes the message

and forwards the actual results to the client.

Figure 9 Web Services Architecture

Figure 10, shows a table which compares Web Services and .Net Remoting. Web

Services only support the HTTP protocol while .Net Remoting supports the TCP, the HTTP and

SMTP protocols. Therefore, considering this property .Net Remoting is better suited than Web

Services. On the performance side [11], the Web Services has better performance in

comparing the performance of .Net Remoting using the HTTP and TCP channels. Web

Services are stateless. Each time a client invokes an ASP.NET Web service, a new object is

created to service the request. The object is destroyed after the method call completes. On the

other side, .Net Remoting can have stateless objects and no stateless objects. Such the

remoting infrastructure allows you to create Singleton (state of a single instance is shared

among clients) remote objects and SingleCall (stateless) objects.

Web Services are characterized to be platform independent. The simple programming

model based on mapping SOAP message exchanges to individual method invocations makes

it possible to use the WSDL (Web Services Definition Language) and XML schema. However,

.Net Remoting is a complex model which both sides to communicate need the .Net

Infrastructure.

 Web Services .Net Remoting

Protocol Can be only accessed over

HTTP

Can be accessed over any protocol

(including TCP, HTTP, SMTP and so on)

http://www.developer.com/img/articles/2003/05/06/Thiru/Remote2.jpg
http://www.developer.com/img/articles/2003/05/06/Thiru/Remote2.jpg
http://www.developer.com/img/articles/2003/05/06/Thiru/Remote2.jpg
http://www.developer.com/img/articles/2003/05/06/Thiru/Remote2.jpg

24

 Web Services .Net Remoting

Performance Better performance using the

SOAP formatter with either the

HTTP or the TCP channel

(comparing when used with

.Net Remoting)

Better performance using TCP channels

because Web Services do not support

them

State
Management

Web services work in a

stateless environment

Provide support for both stateful and

stateless environments through

Singleton and SingleCall objects

Type

Web services support only the

datatypes defined in the XSD

type system, limiting the

number of objects that can be

serialized.

Using binary communication, .NET

Remoting can provide support for rich

type system

Intereroperability

Web services support

interoperability across

platforms, and are ideal for

heterogeneous environments.

.NET remoting requires the client be built

using .NET, enforcing homogenous

environment.

Reliability

Highly reliable due to the fact

that Web services are always

hosted in IIS

Can also take advantage of IIS for fault

isolation. If IIS is not used, application

needs to provide plumbing for ensuring

the reliability of the application.

Extensibility

Provides extensibility by

allowing us to intercept the

SOAP messages during the

serialization and deserialization

stages

Very extensible by allowing us to

customize the different components of

the .NET remoting framework.

Ease of
Programming

Easy to create and deploy. Complex to programme.

Figure 10 Comparing ASP .Net Web Services with .Net Remoting

25

CHAPTER 3. TRANSFORMING PRISMA
DISTRIBUTION MODEL TO C# AND

.NET REMOTING

26

3.1 Introduction

In previous works, the PRISMA distribution model has been defined [1][2][3] . In addition,

a UML profile has been defined in order to represent it with the UML notations and concepts.

To automatically generate distributed applications code, the MDA proposal is going to be used.

The technology chosen to be generated is C# .Net [5] and the .Net Remoting framework [21].

 Figure 11, shows the steps that have to be followed to generate PRISMA distributed

applications in C# .Net following the MDA proposal. Nevertheless, the steps shown are exactly

the same for generating the applications in any technology. Following the MDA the PRISMA

distribution model is at a PIM level. To transform the PIM to a PSM, some technology patterns

are identified. At a PSM, the model is represented using a logical diagram. Finally, some

implementation patterns are used to automatically generate the code of the distributed

applications in C# .Net Remoting.

In this chapter, the transformation patterns for automatically generating distributed and

mobile applications from the PRISMA distribution model are identified. In the first section, the

PSM of the PRISMA distribution model is discussed showing the logical diagram of the model.

The technology patterns of transforming the PIM to PSM are done through a table showing the

mappings between them. Next, the implementation patterns for implementing distributed

applications in C# are identified by using a pattern template. To identify these implementation

patterns, the PRISMA distribution model has been implemented. In Appendix B, a bank system

example is presented to show how it is implemented using the PRISMA classes.

PRISMA
DISTRIBUTION
MODEL (PIM)

DISTRIBUTION
PRISMA MODEL
in C# .Net and
Remoting (PSM)

C# .Net
Applications

Technology Patterns

Implementation Patterns

PRISMA
DISTRIBUTION
MODEL (PIM)

DISTRIBUTION
PRISMA MODEL
in C# .Net and
Remoting (PSM)

C# .Net
Applications

PRISMA
DISTRIBUTION
MODEL (PIM)

PRISMA
DISTRIBUTION
MODEL (PIM)

DISTRIBUTION
PRISMA MODEL
in C# .Net and
Remoting (PSM)

DISTRIBUTION
PRISMA MODEL
in C# .Net and
Remoting (PSM)

C# .Net
Applications
C# .Net
Applications

Technology Patterns

Implementation Patterns

Figure 11 Using MDA to generate PRISMA distributed applications in C# .Net.

27

3.2 Platform Specific Model of the PRISMA Distribution

Model in C# .Net

The first step for creating a PSM is to choose a target platform. In this work, the target

platform is .Net using the C# programming language. As we are going to generate distributed

applications, we are going to use .Net Remoting. Our preference was using .Net Remoting to

Web Services is due to the fact that web services implement a service-oriented architecture

and not a component-based architecture as ours. In addition, another fundamental fact that

has influenced in our choice was that web services are stateless however .Net Remoting can

manage objects with states.

To implement the PRISMA private services, which the .Net platform does not easily

provide, a PRISMA middleware is necessary. The PRISMA middleware (see Figure 12) is an

abstract middleware that sits above the .Net platform. As the PRISMA private services, are not

directly provided by the .Net platform, the middleware hides the complexity of the

implementation of these functionalities. The PRISMA middleware is implemented using the

.Net platform, using .Net Remoting and programmed in C#.

Application

PRISMA MIDDLEWARE

.NET MIDDLEWARE

Application

PRISMA MIDDLEWARE

.NET MIDDLEWARE

Figure 12 PRISMA Middleware

The abstract middleware contains all the constructs necessary to create and manage

PRISMA applications. In addition, the PRISMA middleware is in charge of evolution and

reconfiguration of the architectural models. Figure 13, shows the packages that contain the

classes and other constructs of the PRISMA middleware. For example to create a specific

PRISMA aspect, the class AspectBase of the middleware has to be extended.

28

Figure 13 Set of Constructs of the PRISMA middleware

As the PRISMA framework can be distributed, each host where the PRISMA framework is

running should have the PRISMA middleware executing. The PRISMA architectural elements

use the services of their local middlewares and can also call remote middlewares through their

local one. Therefore, the PRISMA middlewares’ of an architectural model use .Net Remoting to

communicate among them. The middleware systems uses the namespace

System.Runtime.Remoting to use the classes and interfaces that it provides to enable

distributed communication and configuration. There is only a middleware instance running at a

time, therefore the calls among the middlewares are Server Activator Object (SAO) and are

activated by Singleton. Singleton types only can have one instance at a time. Thus, all clients

are served by the same instance.

PRISMA
Middleware

PRISMA
Middleware

PRISMA
Middleware

PRISMA
Middleware

PRISMA
Middleware

PRISMA
Middleware

PRISMA
Middleware

PRISMA
Middleware

Figure 14 PRISMA Middleware running on each machine to enable a distribution model.

29

The distribution PRISMA model (PIM) has been mapped to C# .Net concepts. Figure 15,

shows the mapping of the distribution PRISMA model to C#. These C# concepts form part of

the PRISMA middleware. Thus, the middleware contains the classes and services to enable

the creation and management of PRISMA plus the proper services that allow distribution,

mobility, evolution and reconfiguration.

PRISMA

DISTRIBUTION
MODEL

ELEMENT
(PIM)

PRISMA DISTRIBUTION MODEL ELEMENTS IN C#

(PSM)

PRISMA
METAMODEL

MIDDLEWARE(A set of classes)

Distribution Aspect Class

LOC data type

Structure

Move

A set of methods that call to the component and middleware

Attachments

2 sealed classes which aggregate 2 classes: a client class and server class.
class(MarshalByRef)

Binding Links 2 classes: A class for the binding on the system side and another for the
binding of the architectural element the system contains. The class of the

architectural element side that the system contains is composed of two parts:
a client side and a server side (MarshalByRef).

Figure 15 Mappings between the PRISMA distribution model and C#.

In the following, the Distribution Specific model is going to be presented in detail. The Loc

data type and distribution aspect specific model are explained. In addition, Attachments

Specific Model, the Bindings Specific Model and the Mobility Specific Model in .Net C# are

going to be presented showing how the Middleware participates in each one of them. The

specific models are explained using logical views.

3.2.1 loc Data type Specific Model

The PRISMA abstract data type “loc” specifies if a “location” is valid or not. In .Net the

data type is implemented as a structure (see Figure 16). As .Net Remoting uses the tcp and

http protocol, the loc structure checks if the location value is either tcp or http. In addition, the

any attribute of type “loc”, should have a value. Therefore, the loc checks that the attribute

does not have a null value.

30

«struct»
LOC

~ URI: string

+ «property» uriName() : string
+ LOC(string)
- Val idateURI(string) : bool
+ IsNull() : bool
+ ToString() : string

Figure 16 The loc data type.

3.2.2 Distribution Aspect Specific Model

The distribution aspect specifies the features and strategies that manage the dynamic

location of the instances of the architectural elements of a software architecture. The

distribution extends the AspectBase class. As the distribution aspect has the same features of

any aspect plus its own properties such as the location, the DistributionAspectBase inherits

from AspectBase (see Figure 17).

DistributionAspectBase

location: LOC

+ «property» Location() : LOC
+ DistributionAspectBase(string, AspectType)
+ StartAspect() : void

IDisposable
«interface»

IAspect

+ «property» SubProcessesList() : SubProcessesCollection
+ «property» AspectName() : string
+ «property» aspectType() : AspectType
+ «property» AspectThread() : Thread
+ StartAspect() : void
+ StopAspect() : void
+ AbortAspect() : void
+ «property» middlewareServer() : MiddlewareSystem1
+ «property» componentLink() : ComponentBase
+ IsLinked() : bool

AspectBase

Figure 17 The Distribution Aspect logical view.

As a distribution aspect can specify the mobility of an instance, another class has been

defined for this case. Therefore, another class called MobileDistributionAspect inherits from

DistributionAspectBase. The MobileDistributionAspect maps a distribution aspect with a move

service (see Figure 18).

31

Figure 18 The Distribution Aspect with a move service.

3.2.3 Attachments Specific Model

An attachment in the PRISMA distribution model connects two distributed architectural

element instances which need to communicate. Thus, an attachment can be seen as the

communication channel between two instances of the architectural model. An attachment is

defined by connecting a port (A port is the point where a component receives and offers its

services) of a component with a role of a connector. If the architectural elements are distributed

then their locations should be indicated.

Four classes are necessary to exist for implementing PRISMA attachments (see Figure

19). The AttachmentsCollection class is necessary so that the middleware keeps the list of

Attachments defined on that machine (middleware). The Attachment class represents part of

the Attachment of an architectural element. Thus a PRISMA attachment in C# is mapped into

two Attachment classes. Each attachment class is to represent an attachment side of an

architectural element. Therefore, a PRISMA attachment can be mapped into two distributed

classes depending if the architectural elements are distributed. For example, a specification of

a PRISMA attachment “Comp1(Port1,location) Conn1(Port2,location)” is implemented by

an Attachment class at the Comp1 architectural element and another at the side of the Conn1

architectural element. If the architectural elements are distributed then each middleware has a

reference of the Attachment side of the architectural element which resides on the same

machine.

Each Attachment side has a reference of the other side of the Attachment. However, each

Attachment side creates an instance of an AttachmentClientBase and an instance of an

AttachmentServerBase on its side. The AttachmentClientBase is a thread that listens at a

32

certain port of the attached architectural element and redirects the methods to an

AttachmentServerBase of the other side of the attachment. The AttachmentServerBase is the

part of the attachment that is published by remoting through the MarshalByRef class. Thus, the

AttachmentServerBase is the part of the attachment which redirects the method to a port of an

architectural element. In addition, in many cases it acts as an intermediary between the

exterior and the AttachmentClientBase instance thus as previously commented it is published

by Remoting.

MarshalByRefObject
IDisposable

AttachmentServ erBase

- attach: Attachment

+ AttachmentServerBase(Attachment)
«property» Component() : IComponent
+ GiveMeName() : string
+ GiveMePort() : string
+ IsPort() : bool
+ MyCoupleName() : string
+ AttachmentStart() : void
+ AttachmentStop() : void
+ AttachmentAbort() : void
+ Dispose() : void
+ ChangeLocationOfMyCouple(string, AttachmentServerBase) : void
+ Initial izeLifetimeService() : object
+ IsLive() : bool

AttachmentsCollection

- attachmentList: ArrayList

+ AttachmentsCollection()
+ «property» AttachmentList() : ArrayList
+ «indexer» this(string) : Attachment
+ «indexer» this(int) : Attachment
+ Add(Attachment) : void
+ Remove(string) : void
+ «property» Count() : int

IDisposable
AttachmentClientBase

- attachmentName: string
remote: AttachmentServerBase
- hasFinish: bool
component: IComponent
portName: string
- queue: Queue
- attachmentThread: System.Threading.Thread
- isfinish: bool

+ AttachmentClientBase(IComponent, string, string)
+ AttachmentStart() : void
+ ConnectToRemoteAttachment(AttachmentServerBase) : void
+ AttachmentStop() : void
+ AttachmentAbort() : void
+ Dispose() : void
+ Process(ListenersQueue) : void

IDisposable
Attachment

{leaf}

- attachmentName: string
- portName: string
- component: IComponent
- isPort: bool
- isLocal: bool
- Server: AttachmentServerBase
- Client: AttachmentClientBase
- myPath: string
- myCoupleName: string
- myCouplePath: string
- myCoupleComponentName: string
- myCoupleInterface: string
- myCoupleServerType: Type

+ CreateName(string, string, string, string) : string
+ GetComponentAndConnectorNames(string, string, string) : void
+ GetComponentAndConnectorPortNames(string, string, string) : void
+ GetURLofPublishedAttachment(string, string) : string
+ Attachment(IComponent, string, string, string, string, string, MiddlewareSystem)
+ «property» AttachmentName() : string
+ «property» PortName() : string
+ «property» Component() : IComponent
+ «property» IsPort() : bool
+ «property» IsLocal() : bool
+ «property» ServerReference() : AttachmentServerBase
+ «property» MyCoupleName() : string
+ «property» MyCouplePath() : string
+ «property» MyCoupleComponentName() : string
+ «property» MyCoupleInterface() : string
+ AttachmentStart(AttachmentServerBase) : void
+ AttachmentStop() : void
+ AttachmentAbort() : void
+ CreateProxyOfMyCouple() : AttachmentServerBase
+ ChangeLocationOfMyCouple(string, AttachmentServerBase) : void
+ Dispose() : void

MarshalByRefObject
Middlew are::Middlew areSystem

-attach

#remote

-Client

-Server

-attachmentList

Figure 19 Logical view of PRISMA Attachments

Figure 20, shows an interaction diagram of the commencement of the execution of an

attachment. The figure assumes that the two Attachment instances are distributed therefore

the instance RemoteMiddleware exists to represent the distributed communication between it

33

and the local Middleware (MiddlewareSystem). When a middleware is instantiated, the

middleware directly instantiates the AttachmentsCollection class. The Middleware has a

method that creates Attachments createAttachment. The middleware checks if the two sides of

the attachment are local or not. If the two sides of the attachment is distributed it invokes the

createAttachment of the middleware where the other architectural element resides

(RemoteMiddleware) to instantiate the attachment part on its side. Then the middleware

instantiates the class Attachment, for the attachment part on its side, in which the Attachment

instantiates AttachmentClientBase and AttachmentServerBase.

Middleware::
MiddlewareSystem1

:
AttachmentsCollection

:AttachmentRemoteMiddleare :
AttachmentClientBase

:
AttachmentServerBase

new AttachmentCollection()

createAttachment

Attachment()

AttachmentServerBase

AttachmentClientBase()
Add(Attachment)

StartAttachmentPair

ConnectToRemoteAttachment(remoteAttachmentServer)

start

Figure 20 An interaction diagram of the Attachments

After, the middleware invokes the AttachmentStart of the AttachmentServerBase instance

of the other middleware to redirect it to the Attachment of its side. The middleware calls the

AttachmentServerBase of the other side because it is published by remoting and is accessible.

Then the middleware invokes the startAttachment of the Attachment instance. The Attachment

then calls the start of the AttachmentClientBase instance so that it registers to a port of the

architectural element and creates a thread to listen at that port.

3.2.4 Bindings Specific Model in C#

A binding is the connection between a PRISMA system (an architectural element which is

composed of other architectural elements) and the architectural element it contains. Thus, a

binding is the communication channel between an architectural element of a system and the

34

system it belongs to. In PRISMA, the system canbe independent of the architectural elements

it contains therefore, a system and its architectural elements can be distributed. A binding in

PRISMA is defined by connecting a system port with a component port. If they are distributed

then the locations of the system and component has to be given.

When a PRISMA system is created a SystemBinding is instantiated. The SystemBinding

class represents the part of the binding on the system side (see Figure 21). That is, the system

side has its own binding part which is the SystemBinding. The ComponentBinding is the class

which represents the binding part of the architectural element which is contained in the system.

If the system architectural element and the architectural element it contains are distributed the

SystemBindingServer is instantiated. The ComponentBinding creates an instance of the

ComponentBindingClientBase and the ComponentBindingServerBase. For example, a

specification of a PRISMA binding “System(Port1,location) Comp1(Port2,location)” is

implemented by an SystemBinding class at the System architectural element and another at

the side of the Comp1 architectural element which is implemented by the ComponentBinding.

The ComponentBindingClientBase is a thread that listens at a certain port of the attached

architectural element and redirects the methods to a SystemBindingServer of the other side of

the binding if the system and the architectural element it contains are distributed. The

ComponentBindingServerBase is the part of the binding of a contained architectural element

that is published by remoting through the MarshalByRef class. Thus the

ComponentBindingServerBase is the part of the binding which redirects the method to a port of

an architectural element. In addition, in many cases it acts as an intermediary between the

exterior and the ComponentBindingClientBase instance thus as previously commented it is

published by remoting. The structure ComponentBindingData is used by the SystemBinding to

store the necessary information of a ComponentBinding for example the ports that a binding is

attached to.

35

Figure 21 Logical View of a Binding implemented in C#

Figure 22, shows an interaction diagram of how the bindings start to work. When a

SystemBase is instantiated it instantiates a SystemBinding to add the bindings associated to it.

The SystemBinding instantiates a SystemBindingServer if the two binding parts are distributed,

if they are not distributed it is not necessary to create an instance of SystemBindingServer. The

SystemBinding asks the middleware to create a ComponentBinding. The local middleware

(MiddlewareSystem1) checks if the component resides on the same machine as the

middleware or not. If the component is distributed the middleware calls the

createComponentBinding of the other middleware where the component resides. The

ComponentBinding creates an instance of ComponentBindingClientBase and

ComponentBindingServerBase. If the component is local the middleware returns a reference of

the ComponentBindingServerBase to the SystemBinding if not it returns a proxy to the

ComponentBindingServerBase of the other side.

36

:
SystemBase

:
SystemBinding

:
MiddlewareSystem1

RemoteMiddlleware ComponentBinding ComponentBindingServerBaseComponentBindingClientBaseSystmBindingServer

AddBinding

SystemBindingServer

ComponentBindingServerBase:=
createComponentBinding

[if (componentPath != this.
middlewareURL)]:
createComponentBinding

ComponentBinding

ComponentBindingclientBase

ComponentBindingServerBase
ComponentBindingserver:=

start(ISystemBindingServer remoteSystemBinding)

start(ISystemBindingServer)

start()

addRequest

Figure 22 An interaction diagram of the Bindings

When the middleware returns a reference or a proxy to the SystemBinding, the

SystemBinding stores the information of the ComponentBinding in a structure. If the

ComponentBinding is distributed the SystemBinding calls start(ISystemBindingServer) to the

ComponentBindingServerBase. This is done due to the fact that the

ComponentBindingServerBase is published through Remoting and can be accessible. Then,

ComponentBindingServerBase redirects this message to the ComponentBinding. The

ComponentBinding then calls the ConnectToSystemBinding of the

ComponentBindingClientBase to give it the reference of the SystemBindingServer. After, the

ComponentBinding calls the start of the ComponentBindingClientBase to register it to a

component port and creates its thread to start listen. When a ComponentBindingClientBase

detects a method in a port it processes it and redirects it to the SystemBindingServer through

the method AddRequest which then is redirected to the SystemBinding.

3.2.5 Mobility Specific Model in C#

The Mobility Specific Model of PRISMA in C# .Net is characterized to be a Strong Mobility

(previously explained in section 2.4). Strong Mobility has been chosen as the form of mobility

provided by PRISMA to the fact that in our model we are interested to transfer the state of the

mobile objects. In addition our objective is to support replication and migration. The migration

supported by PRISMA is both proactive and reactive. It is proactive and reactive because we

enable that the same object or other objects of the PRISMA architectural model decide on the

time and destination of the migrant.

37

The principal participants of the Mobility Model are the MobileDistributionAspect, the

component thread and the two middlewares: the local middleware and the middleware where

the component is going to be moved (see Figure 23). Each class that its instances have to be

moved, have to be marked with [Serializable] attribute. In our model, all components and

aspects have to be marked with [Serializable] attribute.

A move method of the MobileDistributionAspect calls the Component thread to indicate it

that it has to process a move. When the distribution aspect notifies the component thread of

the mobility the Component thread stops processing from its queue. However, services can be

queued in the Component queue because the queue is Serializable. Then the component

notifies its aspects to stop their threads when they finish processing their queues. When the

whole component stops it notifies the middleware so that the middleware starts the mobility

process. Then the middleware looks for all the attachments and bindings associated to the

mobile component. The middleware performs this operation by checking all the ports that have

a registered attachment. The middleware invokes the Stop method of the Attachment to stop

them executing and unregisters the attachment part local to it.

Next, the local middleware calls the middleware where the component is going to be

moved. The other middleware creates the component and its associated attachments and

registers them on its side. Then for each ServerAttachment the new reference or proxy is sent

to the ClientAttachment on the other side.

Middleware RemoteMiddlewareMobileDistributionAspect
ComponentBase

isStopping

move

Stop

TransferComponent

Figure 23 An Interaction Diagram of the Mobility Process

38

3.3 Implementation Patterns

This section identifies the implementation patterns of the PRISMA distribution model.

These patterns describe how certain elements of the PRISMA applications are automatically

generated using some implemented C# classes that form the PRISMA middleware.

The patterns template used in this section, follows the pattern template in [20]. The

following sections are part of the template:

• Pattern Name: A name is given to describe the problem solved.

• Context: Where and when the pattern is applied.

• Problem: What problems does the pattern solve?

• Forces: What makes it necessary to find for a solution to the problem

• Solution: How is the problem solved?

• Structure: A graphical representation of the solution of the problem.

• Participants: The classes that participate in the solution.

• Consequences: How does the pattern support its objectives?

• Example: An example is used to explain to show how the pattern is used.

• Implementation: This section shows some explanations and comments on how

the pattern has been implemented.

• Related Patterns: What patterns are related to this pattern?

3.3.1 loc Data Type.

Context.

A data type called loc of the PRISMA meta-model has to be implemented

in order to automatically generate properties with data type loc. This data type

checks if the locations assigned to the PRISMA elements have a correct

position in the PRISMA application system. This data type has to be

implemented in C#.

Problem.

How is the loc data type implemented in C#? How can a property have a

data type of type loc?

39

Forces.

• Maintenance effort: very low maintenance costs are desirable. The

properties with a data type loc have to be automatically generated.

• Reusability: The solution proposed should be reusable for all

properties with data type loc.

• Flexibility: the solution proposed should be adaptable to work with

all data types PRISMA and C#

Solution.

A C# structure called loc is defined. Each class that has a property with

data type loc has to be associated with loc structure. The only PRISMA class

that can have a loc data type is the distribution aspect.

Structure.

 Figure 24 shows a generic class diagram which uses the solution proposed.

The structure loc is responsible of giving a data type of type loc to any property.

D is tr ibu tionAs pe c tB a s e

l o ca t i o n : L O C
e sta d o : p ro to co l S ta te s

+ « p ro p e rty» L o ca ti o n () : L O C
+ D i stri b u t i o n A sp e ctB a se (stri n g , A sp e ctT yp e)
+ S ta rtA sp e ct() : vo i d

« stru ct»
P R IS M A ::LO C

~ U R I: stri n g

+ « p ro p e rty» u ri N a m e () : stri n g
+ L O C (stri n g)
- V a l i d a te U R I(stri n g) : b o o l
+ IsN u l l () : b o o l
+ T o S tri n g () : stri n g

+ l o ca t i o n

Figure 24 Generic use of loc

40

Participants.

In Figure 24:

• A is a property which instantiates the structure loc in order to assign its

data type as loc.

• LOC is the structure that checks if the property is valid to be a correct

location in respect to the PRISMA application system.

Consequences.

• Facilitates automatic generation of properties of data type loc. To make

a property of data type loc all that is required is to make an instantiation

of the structure LOC.

• Good maintainability. The property is checked to be a valid location.

• Reusability. LOC is directly reusable by any property that has to be of

data type loc.

Example.

Figure 25, shows how a distribution aspect has an association with the

LOC structure to have a location property with a loc data type.

«struct»
PRISMA::LOC

~ URI: string

+ «property» uriName() : string
+ LOC(string)
- ValidateURI(string) : bool
+ IsNull() : bool
+ ToString() : string

+location

D i s t ri b u t i o n A s p e c tB a s e
E x tM b i le

+ E x tM b i l e ()
+ M o v e (L O C) : A sy n c R e su l t
- _ M o v e D e l e g a te (L O C) : v o i d
+ _ M o v e (L O C) : v o i d
+ C h a n g e A d d re ssT o L O C (st ri n g) : L O C
+ C h a n g e A d d re ssT o L O C D e l e g a te (st ri n g) : L O C

«struct»
PRISMA::LOC

~ URI: string

+ «property» uriName() : string
+ LOC(string)
- ValidateURI(string) : bool
+ IsNull() : bool
+ ToString() : string

+location

D i s t ri b u t i o n A s p e c tB a s e
E x tM b i le

+ E x tM b i l e ()
+ M o v e (L O C) : A sy n c R e su l t
- _ M o v e D e l e g a te (L O C) : v o i d
+ _ M o v e (L O C) : v o i d
+ C h a n g e A d d re ssT o L O C (st ri n g) : L O C
+ C h a n g e A d d re ssT o L O C D e l e g a te (st ri n g) : L O C

Figure 25 A distribution aspect is associated with loc structure

41

Implementation.

• public uriName():string

This is a property associated to a string which represents the location. It

sets the location after checking if it has a valid value. It also returns the value if

it is requested. The code is as following:
 string URI;
 public string uriName {
 get { return URI; }
 set { URI = (ValidateURI(value) ? value :
""); }

 }

• public LOC (string location)

This is the constructor method of LOC. It has as a parameter a location. It

validates the parameter through the method ValidateURI(location),

only if the location is valid it assigns it to the URI. Its code is as following:

 public LOC(string location){
 URI = null;
 if (ValidateURI(location)) {
 URI = location;
 }

 }

• private ValidateURI (string location):bool

This method checks if the location is valid. The correctness is checked if

the location is an http or a tcp. This is done by checking if the string starts with

an http:// and a tcp://. Its code is as following:
 private bool ValidateURI(string location) {
 if (!(location.StartsWith("http://")) &&

 !(location.StartsWith("tcp://"))){
 throw new
NoValidLOCException(location);
 } else{
 return true;
 }

 }

42

• public IsNull():bool

This method checks if a value is assigned to location. Its code is as

following:
 public bool IsNull(){
 return (URI == null);

 }

• public ToString():string

Related Patterns.

No related Patterns

3.3.2 Distribution Aspect.

Context.

A PRISMA distribution aspect contains the distribution properties and

needs to have a variable called location. A distribution aspect has to be

implemented to automatically generate the code of a PRISMA distribution

aspect. This distribution aspect has to be implemented in C#.

Problem.

How is the distribution aspect implemented in C#? How can a distribution

aspect be automatically generated?

Forces.

• Maintenance effort: very low maintenance costs are desirable.

The impact of modifying a distribution aspect specification using

PRISMA languages and UML notation should be minimum.

• Reusability: The solution proposed should be reusable for all

distribution aspects.

• Flexibility: the solution proposed should be adaptable to work with

all distribution aspects PRISMA and C#

43

Solution.

A C# class that inherits from AspectBase is defined. Each distribution

aspect implemented in C# should inherit from this class.

Structure.

 Figure 26, shows a generic class diagram which uses the solution

proposed. The DistributionAspectBase inherits from AspectBase to specify the

proper properties of PRISMA distribution aspects. DistributionAspectBase is in

charge of generating all PRISMA distribution aspects in C#. The PRISMA

distribution aspects have to inherit from DistributionAspectBase.

D is tr ibu tionA s pe c tB a s e

ID i sp o sa b l e
« i n te rfa ce »

IA s pe c t

A s pe c tB a s e

A

Figure 26 A DistributionAspectBase is implemented that is specialized from
AspectBase

Participants.

In Figure 26:
• A is a distribution aspect which inherits from DistributionAspectBase to

become a distribution aspect.

• DistributionAspectBase inherits from AspectBase to include its own

distribution properties that all distribution aspects should specialize to

automatically generate the code.

• AspectBase is the class that has the properties of a PRISMA aspect.

• IAspect is the interface which implements the aspects.

44

Consequences.

• Facilitates automatic generation of distribution aspects. To make a

PRISMA distribution aspect it has to inherit from

DistributionAspectBase.

• Good maintainability.

• Reusability. Any distribution aspect to be generated has to inherit from

DistributionAspectBase.

Example.

Figure 27, shows how a distribution aspect called ExtMbile has to inherit

from DistributionAspectBase to be generated.

IM o b i l i ty
E x tM bile

+ E xtM b i l e ()
+ M o ve (L O C) : A syn cRe su l t
- _ M o ve De l e g a te (L O C) : vo i d
+ _ M o ve (L O C) : vo i d
+ C h a n g e A d d re ssT o L O C(stri n g) : L O C
+ C h a n g e A d d re ssT o L O CD e l e g a te (stri n g) : L O C

A sp e c tB a se
As pe c ts ::D is tr ibu tionA s pe c tB a s e

l o ca ti o n : L O C
e sta d o : p ro to co l S ta te s

+ « p ro p e rty» L o ca ti o n () : L O C
+ D i stri b u t i o n A sp e ctB a se (stri n g , A sp e ctT yp e)
+ S ta rtA sp e ct() : vo i d

Figure 27 A ExtMbile distribution aspect has to inherit from the

DistributionAspectBase

Implementation.

• public Location():LOC

This is a property to enable to consult the location. It also returns the

value if it is requested. The code is as following:
 protected LOC location;
 public LOC Location {
 get { return location; }
 }

45

• public DistributionAspectBase(string name, AspectType type) :

base(name , type)

This is the constructor of DistributionAspectBase class which has to use

the constructor of the AspectBase because it is his parent. It has as arguments

the name of the distribution aspect and the type to indicate it is a distribution

aspect. The code is as following:
 public DistributionAspectBase(string name,
AspectType
 type) : base(name , type) {
 }

• public override startAspect() :void

This method overrides the startAspect method of AspectBase. This

method is used each time the distribution aspect is loaded for assigning to the

location property the value of the middleware URL.
 public override void StartAspect() {
 if (

this.aspectType.Equals(AspectType.Distribution))
 location = new

LOC(link.MiddlewareServer.MiddlewareURL);
 base.StartAspect();
 }
 }

Related Patterns.

 No related Patterns

3.3.3 Distribution Aspect with Service move().

Context.

A PRISMA distribution aspect contains the distribution properties and

needs to have a variable called location and a move service. The move service

enables the mobility of the architectural elements. A distribution aspect has to

be implemented to automatically generate the code of a PRISMA distribution

aspect with the location and mobility. This distribution aspect has to be

implemented in C#.

46

Problem.

How is the distribution aspect with the move service implemented in C#?

How can a distribution aspect with the move servce be automatically

generated?

Forces.

• Maintenance effort: very low maintenance costs are desirable.

The impact of modifying a distribution aspect specification using

PRISMA languages and UML notation should be minimum.

• Reusability: The solution proposed should be reusable for all

distribution aspects.

• Flexibility: the solution proposed should be adaptable to work with

all distribution aspects PRISMA and C#

Solution.

A C# class that inherits from MobileDistributionAspect is defined. Each

distribution aspect with the move service should inherit from this class to be

implemented in C#.

Structure.

Figure 28, shows a generic class diagram which uses the solution

proposed. The MobileDistributionAspect inherits from DistributionAspectBase

to specify the proper properties of PRISMA distribution aspects including the

mobility. MobileDistributionAspect is in charge of generating all PRISMA

distribution aspects in C# with mobility capabilities. The PRISMA distribution

aspects have to inherit from MobileDistributionAspect.

47

MobileDistributionAspect

+ MobileDistributionAspect(AspectType, string) : void
- _MoveDelegate(LOC) : void
+ _Move(LOC) : void
+ Move(LOC) : AsyncResult

Aspects::DistributionAspectBase

location: LOC
estado: protocolStates

+ «property» Location() : LOC
+ DistributionAspectBase(string, AspectType)
+ StartAspect() : void

A

Figure 28 A MobileDistributionAspect is implemented that is specialized from
DistributionAspectBase

Participants.

In Figure 26:
• A is a distribution aspect which inherits from MobileDistributionAspec to

become a distribution aspect with the service move implemented.

• MobileDistributionAspect inherits from DistributionAspectBase to

include its own distribution properties including the implementation of

the service move that all distribution aspects should specialize to

automatically generate the code.

• DistributionAspectBase inherits from AspectBase to include its own

distribution properties that all distribution aspects should specialize to

automatically generate the code.

Consequences.

• Facilitates automatic generation of distribution aspects with service

move. To make a PRISMA distribution aspect with service move it has

to inherit from MobileDistributionAspect.

• Good maintainability.

• Reusability. Any distribution aspect to be generated with service move

48

has to inherit from MobileDistributionAspect.

Example.

Figure 29, shows how a distribution aspect called ExtMbile has to inherit

from DistributionAspectBase to be generated.

MobileDistributionAspect

+ MobileDistributionAspect(AspectType, string) : void
- _MoveDelegate(LOC) : void
+ _Move(LOC) : void
+ Move(LOC) : AsyncResult

Aspects::DistributionAspectBase

location: LOC
estado: protocolStates

+ «property» Location() : LOC
+ DistributionAspectBase(string, AspectType)
+ StartAspect() : void

ExtMbile

Figure 29 A ExtMbile distribution aspect has to inherit from the

DistributionAspectBase

Implementation.

• public MobileDistributionAspect(string name, AspectType type)

: base(name , type)

This is the constructor of MobileDistributionAspect class which has to use

the constructor of the MobileDistributionAspect because it has to use the

constructor of its base class. The name of the distribution aspect and the type

are the arguments of the constructor. The type argument is to indicate that it is

a distribution aspect. The code is as following:
 public MobileDistributionAspect(): base(name ,
type) {

 }

• public Move(LOC) :AsynchResult

This method is invoked when the component is requested to move. First a

delegate is created, then the delegate is queued in the aspect queue. The

code is as following:
 public AsyncResult Move(LOC newLoc) {

49

 _MoveDelegate moveDelegate = new
_MoveDelegate(this._Move);
 AsyncResult result = new AsyncResult(1);
 ClassQueueAspect classQueueAspect = new
ClassQueueAspect(moveDelegate,
 new object[] {newLoc},
System.Threading.Thread.CurrentThread, result);

 queuecallaspect.Enqueue(classQueueAspect);
 return result;
 }

• public _Move(LOC) :void

This method is the internal method of move. When this service is

activated the method calls to the component that is going to move. Then it calls

asynchronously to the middleware to complete with the mobility process.
 private delegate void _MoveDelegate(LOC
newLoc);
 public void _Move(LOC newLoc) {

 if (estado != protocolStates.MOVEMENT) {
 throw new
InvalidProtocolStateException(this.aspectName, "Move");
 }

 link.IsStopping = true;

 MiddlewareSystem.MoveDelegate delegado =
new MiddlewareSystem.MoveDelegate(middlewareRef.Move);
 IAsyncResult iAR =
delegado.BeginInvoke(newLoc, link.componentName,
 new
AsyncCallback(MiddlewareSystem.MoveCallBack), delegado);

 middlewareRef.AddMessage("Location of " +
aspectType.ToString() + " aspect has changed to: "
 + location);

 }

Related Patterns.

 No related Patterns

50

3.3.4 Attachments.

Context.

Attachments in PRISMA are responsible of the communication channel

between two architectural elements. The PRISMA attachments have to be

implemented to automatically generate their code. The attachments have to be

implemented in C# .Net.

Problem.

How is an attachment between two architectural elements implemented in

C#? How can a PRISMA attachment be automatically generated in C# .Net?

Forces.

• Maintenance effort: very low maintenance costs are desirable.

The impact of modifying an attachment specification using

PRISMA languages and UML notation should be minimum.

• Reusability: The solution proposed should be reusable for all

attachments.

• Flexibility: the solution proposed should be adaptable to work with

all PRISMA attachments in C#.

Solution.

Two C# classes are necessary to automatically generate a PRISMA

attachment between two architectural elements in C#: one to represent the

server-side of a partner of an attachment and another to represent the client-

side of a partner of an attachment. A PRISMA attachment in C# is

implemented into four classes: a server attachment class for each end and a

client attachment class for each end (architectural element). Each superclass

is associated with a class which is used by the middleware to have a reference

of each client-server side of a partner of an attachment.

Structure.

Figure 30, shows a generic class diagram which uses the solution

proposed. The AttachmentClientBase and AttachmentServerBase are

responsible of the generation of an attachment. For each partner of an

51

attachment, two classes have to be generated: one must inherit from

AttachmentClientBase and another must inherit from AttachmentServerBase.

M a rsh a l B yRe fO b je c t
ID i sp o sa b l e

A tta c hm e n tS e rv e rB a s e

ID i sp o sa b l e
A tta c hm e ntC lie n tBa s e

ID i sp o sa b l e
Atta c h m e nt

{l e a f}

c lie n tA c lie n tB s e rv e rA s e rv e rB

-a tta ch

re m o te

-C l i e n t -S e rve r

Figure 30 The generation of a PRISMA attachment in C#.

Participants.

• clientA is the client part of the attachment of an architectural element A.

• serverA is the server part of the attachment of an architectural element

A.

• clientB is the client part of the attachment of an architectural element B.

• serverB is the server part of the attachment of an architectural element

B.

• AttachmentClientBase is the class that gives the properties necessary

to the client part of an attachment once generated. This class is

associated with AttachmentServerBase to have a reference to which

server side it is connected. In addition, it is associated with class

Attachment to have a reference to which attachment it belongs.

• AttachmentServerBase is the class that gives the properties necessary

to the server part of an attachment once generated. This class is

associated with AttachmentClientBase to have a reference to which

client side it is connected. In addition, it is associated with class

Attachment to have a reference to which attachment it belongs. It uses

MarshalByRef to enable remote communication between the client-side

of a partner and the server-side of the other partner of an attachment.

• Attachment is a class that has the reference of both sides of an

attachment: a client side and a server side of a participant of an

attachment.

52

Consequences.

• Facilitates automatic generation of an attachment. To make a PRISMA

attachment four classes have to be generated two inheriting from

AttachmentClientBase and two inheriting from AttachmentServerBase.

• Good maintainability.

• Reusability. Any attachment to be generated has to inherit from

AttachmentServerBase and AttachmentClientBase.

Example.

Figure 31, shows an example of a PRISMA attachment between two

components. As attachments in PRISMA are bidirectional, a separation

between the client-side and server-side of each part of the attachment has

been necessary at implementation.

Figure 31 A PRISMA attachment generating four classes: two inheriting from

AttachmentClientBase and two inheriting from AttachmentServerBase.

Figure 32, shows the result of generating the classes in Figure 31. For

each partner of the attachment, that is, for each architectural element

53

participating in the attachment part of the attachment is created. Each part of

the attachment has its client and server side. The client-side of a participant of

an attachment is connected with the server-side of its partner.

AttacmentIMobilityClient

AttachmentIMobilityServer
AttachmentICreditCardT
ransactionsClient

AttachmentICreditCard
TransactionsServer

Middleware1 Middleware2

AttachmentComponent1 AttachmentComponent2

AttacmentIMobilityClient

AttachmentIMobilityServer

AttacmentIMobilityClient

AttachmentIMobilityServer
AttachmentICreditCardT
ransactionsClient

AttachmentICreditCard
TransactionsServer

AttachmentICreditCardT
ransactionsClient

AttachmentICreditCard
TransactionsServer

Middleware1 Middleware2

AttachmentComponent1 AttachmentComponent2

Figure 32 A diagram which explains the result of the example of Figure 31.

Implementation.

-AttachmentClientBase class is implemented as follows:

• public AttachmentClientBase(IComponent component

string portName, string attachmentName)

This is the constructor of the AttachmentClientBase class which is

invoked by the Attachment. It has three parameters: IComponent

component, string portName and string attachmentName.

IComponent component is the name of the component instance where the

attachment will listen. String portName is the name of the port where the

attachment will listen. String attachmentName is the name of the global

attachment it belongs to. The code is as following:
 public AttachmentClientBase(IComponent
component, string portName, string attachmentName) {

 this.component = component;
 this.portName = portName;
 this.attachmentName = attachmentName;
 }

• public AttachmentStart():void

This method is executed by the Attachment class(the aggregate class) to

assign the ClientAttachment a component port to listen. initiate the thread of

the client part. Before executing this method, the method

54

ConnectToRemoteAttachment must have been called to indicate the

reference of the server part it needs to connect with. This service waits until a

service is queued to process it. The code is as following:
 public void AttachmentStart() {
 this.queue =
((PRISMA.Components.Ports.OutPort)component.OutPorts[portNa
me]).RegisterListener(attachmentName);

 hasFinish = false;

 if (this.remote == null)
 throw new Exception("The
AttachmentServer reference to Connect to must be instanced
before calling " +
 "this method, with calling
\"ConnectToRemoteAttachment\" method");

 isfinish = false;
 attachmentThread =
System.Threading.Thread.CurrentThread;
 while(!isfinish) {
 while((queue.Count == 0) &&
(!isfinish))

 System.Threading.Thread.Sleep(100);
 if (!isfinish)

 Process((ListenersQueue)
queue.Dequeue());
 }
 hasFinish = true;
 }

• public ConnectToRemoteAttachment(
AttachmentServerBase remote):void

This method is invoked by the Attachment to indicate to the client

attachment the proxy to its server side attachment if they are distributed or a

reference to its server side if they are local. The code is as following:
 public void
ConnectToRemoteAttachment(AttachmentServerBase remote) {
 this.remote = remote;
 }

• public AttachmentStop():void

This method stops the listening to petitions by destroying the thread and

unregistering it from the component port it was listening at. The code is as

following:
 public void AttachmentStop() {
 isfinish = true;
 while (this.hasFinish == false) {

55

 System.Threading.Thread.Sleep(25);
 }

 ((OutPort)component.OutPorts[portName]).UnRegister(th
is.attachmentName);
 }

• public Dispose():void

This method prepares to destroy the client part. The code is as following:
 public void Dispose() {
 }

• public Process(ListenersQueue queue):void

This method processes a petition which is encapsulated in an object of

type ListenersQueue .The code is as following:

 public virtual void Process(ListenersQueue
queue) {}

-AttachmentServerBase has to be MarshalByRef. It is a published class in

Remoting. The class is implemented as follows:

• public AttachmentServerBase(Attachment attach)

This is the constructor of the AttachmentServerBase class. It has an

argument Attachment attach, to have a reference to the global attachment.

This is necessary because the server side of the attachment has to redirect

some necessary petitions to the Attachment. These situations are necessary

due to the fact that the server side is remotely published and acts as a

coordinator between the remote objects and the Attachment. The code is as

following:
 public AttachmentServerBase(Attachment attach) {
 this.attach = attach;

 }

• protected Component():IComponent

This is a property which enables to access a component to redirect to it

the petitions. The code is as following:
 protected IComponent Component { get { return

56

attach.Component; } }

• public GiveMeName():string

This method returns the name of the component to which the attachment

acts as a server proxy. The code is as following:
 public string GiveMeName() {
 return
((PRISMA.Components.IComponent)attach.Component).componentN
ame;

 }

• public GiveMePort():string

This method returns the name of the port to which this part of the client

listens on this part of the attachment. The code is as following:
 public string GiveMePort() {
 return attach.PortName;

 }

• public IsPort():bool

This method enables to differeentaiate if it is on a component “true” or a

connector “false” side. The code is as following:
 public bool IsPort() {
 return attach.IsPort;

 }

• public MyCoupleName():string

This method returns the name of the other part of the attachment (the

client part it is connected with). The code is as following:
 public string MyCoupleName() {
 return attach.MyCoupleName;
 }

• public AttachmentStart():void

This method is called by the middleware. The attachment server redirects

57

the method to the Attachment so that it passes the proxy of the server side

connected to the client attachment to the client attachment. The code is as

following:
 public void AttachmentStart() {

 attach.AttachmentStart(attach.CreateProxyOfMyCouple()
);

 }

• public AttachmentStop():void

This method is executed by the middleware to stop the attachment The

code is as following:
 public void AttachmentStop() {
 attach.AttachmentStop();

 }

• public Dispose():void

This method disposes the part of the attachment. The code is as

following:
 public void Dispose() {

 }

• public ChangeLocationOfMyCouple(string couplePath,

AttachmentServerBase attachmentServerCouple):void

This method notifies the couple of the server attachment of a change in

the location of the AttachmentServer. This method makes its couple to change

its pointer in cases of mobility.
 public void ChangeLocationOfMyCouple(string
couplePath, AttachmentServerBase attachmentServerCouple) {

 attach.ChangeLocationOfMyCouple(couplePath,
attachmentServerCouple);

 }

• public override InitializeLifetimeService():object

This method overrides the remoting service InitializeLifetimeService().

58

The method returns null indicating that the lifetime of the object is infinite. The

code is as following:
 public override object
InitializeLifetimeService() {
 return null;

 }

• public IsLive():bool

This method returns “true” if the thread is a live. The code is as following:

 public bool IsLive() { return true;}

Related Patterns.

 No related Patterns

3.3.5 Bindings.

Context.

Bindings in PRISMA are responsible of the communication between a

system architectural element and the architectural elements they contain. The

PRISMA bindings have to be implemented to automatically generate their code.

The bindings have to be implemented in C# .Net.

Problem.

How is a binding between a system and an architectural element it contains

implemented in C#? How can a PRISMA binding be automatically generated in

C# .Net?

59

Forces.

• Maintenance effort: very low maintenance costs are desirable. The

impact of modifying a binding specification using PRISMA

languages and UML notation should be minimum.

• Reusability: The solution proposed should be reusable for all

bindings.

• Flexibility: the solution proposed should be adaptable to work with

all PRISMA attachments in C#.

Solution.

To automatically generate a binding between a PRISMA system and an

architectural element contained in a system, only the binding side of the

architectural elements contained have to generated. However, the binding side

of the system is generated automatically at the generation of a system

architectural element. Therefore, two C# classes are necessary to be generated:

one to represent the server-side of the binding and another to represent the

client side of a binding of an architectural element contained in a system.

Structure.

Figure 33, shows a generic class diagram which uses the solution

proposed. The ComponentBindingClientBase and

ComponentBindingServerBase are responsible of the generation of the bindings

part of an architectural element contained in a system. For each architectural

element that has bindings, two classes have to be generated: one must inherit

from ComponentBindingClientBase and another must inherit from

ComponentBindingServerBase. Remember, that the bindings part of the system

are automatically generated at the generation of a system architectural element.

60

MarshalByRefObject
IDisposable

ComponentBindingServ erBaseComponentBindingClientBase

IDisposable
ComponentBinding

Aclientbinding Aserv erbinding

-parent

-server

-cl ient

Figure 33 The generation of a PRISMA binding for an architectural element
contained in a system in C#.

Participants.

• AclientBinding is the client part of the binding of an architectural element

A.

• AserverBinding is the server part of the architectural element A which

participates in the PRISMA attachment.

• ComponentBindingClientBase is the class that gives the properties

necessary for the client part of a binding of an architectural element

contained in a system once generated.

• ComponentBindingServerBase is the class that gives the properties

necessary to the server part of an architectural elment bindinding once

generated. This class is associated with ComponentBinding to redirect to

it some calls. It uses MarshalByRef to enable remote communication

such that it is the only published part of a binding.

• ComponentBinding is a class that has the reference of both sides of a

binding: a client side and a server side of a participant of a binding.

Consequences.

• Facilitates automatic generation of a binding. To make a PRISMA

binding of an architectural element contained in a system two classes

have to be generated one inheriting from ComponentBindingClientBase

and the other inheriting from ComponentBindingServerBase.

• Good maintainability.

61

• Reusability. Any binding to be generated has to inherit from

ComponentBindinServerBase and ComponentBindingClientBase.

Example.

Figure 34, shows an example of a binding of an architectural element. As a

binding between the system and its architectural element is bidirectional, a

separation between the client-side and server-side of the binding side of an

architectural element has been necessary at implementation.

BindingICreditCardTransactionsServer

- InPortOfComponent: ICreditCardTransactions

+ BindingICreditCardTransactionsServer(ComponentBinding)
+ ChangeAddress(string) : PRISMA.AsyncResult
+ Withdrawal(decimal, decimal*) : PRISMA.AsyncResult
+ Balance(decimal*) : PRISMA.AsyncResult
+ Transfer(decimal, decimal*) : PRISMA.AsyncResult

MarshalByRefObject
IDisposable

Bindings::ComponentBindingServerBase

- parent: ComponentBinding
component: IComponent
stopped: bool

+ GetComponentBindingServerProxy(string, string, string, string, string) : ComponentBindingServerBase
+ GetComponentBindingServerProxy(string, string) : ComponentBindingServerBase
+ ComponentBindingServerBase(ComponentBinding)
+ BindingName() : string
+ MyPath() : string
+ IsLocal() : bool
+ Start() : void
+ Start(ISystemBindingServer) : void
+ Stop() : void
+ ChangeLocationOfSystemBinding(string, SystemBindingServer) : void
+ InitializeLifetimeService() : object
+ IsLive() : bool
+ Dispose() : void

BindingICreditCardTransactionsClient

+ BindingICreditCardTransactionsClient(IComponent, string, string)

Bindings::ComponentBindingClientBase

- bindingName: string
- remote: ISystemBindingServer
- component: IComponent
- portName: string
- ValidMethods: StringCollection
- queue: Queue
- bindingThread: System.Threading.Thread
- isfinish: bool
- hasFinish: bool

+ ComponentBindingClientBase(IComponent, string, string)
+ AddValidMethodsToListen(string[]) : void
+ Start() : void
+ ConnectToSystemBinding(ISystemBindingServer) : void
+ Stop() : void
+ Dispose() : void
- Process(ListenersQueue) : void

BindingICreditCardTransactionsServer

- InPortOfComponent: ICreditCardTransactions

+ BindingICreditCardTransactionsServer(ComponentBinding)
+ ChangeAddress(string) : PRISMA.AsyncResult
+ Withdrawal(decimal, decimal*) : PRISMA.AsyncResult
+ Balance(decimal*) : PRISMA.AsyncResult
+ Transfer(decimal, decimal*) : PRISMA.AsyncResult

MarshalByRefObject
IDisposable

Bindings::ComponentBindingServerBase

- parent: ComponentBinding
component: IComponent
stopped: bool

+ GetComponentBindingServerProxy(string, string, string, string, string) : ComponentBindingServerBase
+ GetComponentBindingServerProxy(string, string) : ComponentBindingServerBase
+ ComponentBindingServerBase(ComponentBinding)
+ BindingName() : string
+ MyPath() : string
+ IsLocal() : bool
+ Start() : void
+ Start(ISystemBindingServer) : void
+ Stop() : void
+ ChangeLocationOfSystemBinding(string, SystemBindingServer) : void
+ InitializeLifetimeService() : object
+ IsLive() : bool
+ Dispose() : void

BindingICreditCardTransactionsClient

+ BindingICreditCardTransactionsClient(IComponent, string, string)

Bindings::ComponentBindingClientBase

- bindingName: string
- remote: ISystemBindingServer
- component: IComponent
- portName: string
- ValidMethods: StringCollection
- queue: Queue
- bindingThread: System.Threading.Thread
- isfinish: bool
- hasFinish: bool

+ ComponentBindingClientBase(IComponent, string, string)
+ AddValidMethodsToListen(string[]) : void
+ Start() : void
+ ConnectToSystemBinding(ISystemBindingServer) : void
+ Stop() : void
+ Dispose() : void
- Process(ListenersQueue) : void

Figure 34 A binding part of an architectural element contained in a system

generated by two classes: one inheriting from ComponentBindingClientBase and
another inheriting from ComponentBindingServerBase.

Variants.

None.

Implementation.

-ComponentBindingClientBase class is implemented as follows:

• public ComponentBindingClientBase(IComponent

component, string portName, string bindingName)

This is the constructor of the ComponentBindingClientBase class. The

62

ComponentBinding instantiates the ComponentBindingClientBase. It has three

parameters: IComponent component, string portName and string

bindingName. IComponent component is the name of the component

instance where the binding is connected to. String portName is the name of

the port where the binding is connected to. String bindingName is the name of

the global binding it belongs to. The code is as following:
 public ComponentBindingClientBase(IComponent
component, string portName, string bindingName) {
 this.component = component;
 this.portName = portName;
 this.bindingName = bindingName;
 this.ValidMethods = new
StringCollection();
 }

• public AddValidMethodsToListen(string[] methods):void

This method has as a parameter the list of methods that the

ComponentBindingClientBase has to listen to and process from the queue. The

code is as the following:
 public void AddValidMethodsToListen(params
string[] methods) {
 ValidMethods.AddRange(methods);
 }

• public Start():void

This method is called by the ComponentBinding to initiate the execution of

the ComponentBindingClientBase thread. The method

ConnectToRemoteBinding has to be previously called to indicate the

reference of the serverBinding which it has to connect to. The method is

registered in an object port to assign a position in the queue where it has to

listen. The code is as following:
 public void Start() {
 hasFinish = false;
 this.queue =
((PRISMA.Components.Ports.OutPort)component.OutPorts[portNam
e]).RegisterListener(bindingName);

 if (this.remote == null)
 throw new Exception("The
SystemBinding reference to Connect to must be instanced
before calling " +
 "this method, with calling
\"ConnectToRemoteBinding\" method");

63

 isfinish = false;
 bindingThread =
System.Threading.Thread.CurrentThread;
 while(!isfinish) {
 while((queue.Count == 0) &&
(!isfinish))

 System.Threading.Thread.Sleep(100);//
 if (!isfinish)
 Process((ListenersQueue)
queue.Dequeue());
 }
 hasFinish = true;
 }

• public ConnectToSystemBinding(ISystemBindingServer
remote):void

This method is called to indicate which reference of the binding side of the

system it has to connect with to redirect the services. If the binding side of the

system is remote it indicates the proxy. The code is as following:
 public void
ConnectToSystemBinding(ISystemBindingServer remote) {
 this.remote = remote;
 }

• public Stop():void

This method stops the ComponentBindingClientBase instance from

listening to petitions by destroying the thread and unregistering it from the

component it was listening at. The code is as following:
 public void Stop() {
 isfinish = true;
 while (this.hasFinish == false) {
 System.Threading.Thread.Sleep(25);
 }

 ((OutPort)component.OutPorts[portName]).UnRegister(thi
s.bindingName);
 }

• public Dispose():void

This method prepares to destroy the client part. The code is as following:
 public void Dispose() {
 }

• public Process(ListenersQueue queue):void

This method processes a petition which is encapsulated in an object of type

64

ListenersQueue. The petition is checked if it corresponds to a method

implemented by this interface. If it is a method implemented by the interface then

the petition is redirected to the SystemBinding. The code is as following:
 private void Process(ListenersQueue queue) {
 if
(ValidMethods.Contains(queue.NombreServicio)) {
 AsyncResult result =
remote.AddRequest(this.bindingName, queue.NombreServicio,
queue.Args);

 queue.Result.SetDerivedParameters(result);
 }
 }

-ComponentBindingServerBase has to be MarshalByRef. The class is

implemented as follows:

• public ComponentBindingServerBase(ComponentBinding compBind):

This is the constructor of the ComponentBindingServerBase class. It has

an argument ComponentBinding compBind, to have a reference to the global

ComponentBinding to allow it to redirect some petitions. The code is as

following:
 public
ComponentBindingServerBase(ComponentBinding compBind) {
 this.parent = compBind;

 }

• public static GetComponentBindingServerProxy(string systemName,

string systemPort, string componentName, string portName, string

componentPath):ComponentBindingServerBase

This method has as parameters the properties that define a binding

between a system and an architectural element. These are necessary because

using this information the ComponentBindingServerBase creates a proxy. The

code is as following:
 public static ComponentBindingServerBase
GetComponentBindingServerProxy(
 string systemName, string
systemPort, string componentName, string portName,
 string componentPath)
 {
 string ComponentBindingName =
"ComponentBinding[" + systemName + "]" +

65

 systemPort + "[" + componentName +
 "]" + portName;
 if (!componentPath.StartsWith("tcp://"))
 componentPath = "tcp://" +
componentPath;
 string URL = componentPath + ":" +
MiddlewareSystem.serverPort + "/" + ComponentBindingName +
".soap";
 return (ComponentBindingServerBase)
Activator.GetObject(typeof(ComponentBindingServerBase),
URL);
 }

• public BindingName():string

This method returns the name of the ComponentBinding it belongs to. The

code is as following:
 public string BindingName() {
 return parent.Name;

 }

• public MyPath():string

This method returns the path it is located at. The code is as following:
 public string MyPath() {
 return parent.MyPath;

 }

• public IsLocal():bool

This method returns if it is local or distributed to the system it is connected

to. The code is as following:
 public bool IsLocal() {
 return parent.IsLocal;

 }

• public Start():void

This method is used to be redirected to the ComponentBinding to start the

thread of the ComponentBindingClientBase. This method is used when the

communication is remote to pass the proxy of the SystemBinding. The code is

as following:
 public void Start() {

66

 parent.Start(parent.CreateProxyOfSystemBinding());
 }

• public Start(ISystemBindingServer systemBindingServer):void

This method is called when the communication is local with the binding side

of the system. The method initiates the ComponentBinding passing the

reference of the SystemBinding. The code is as following:
 public void Start(ISystemBindingServer
systemBindingServer) {
 this.stopped = false;
 if (parent.IsLocal)
 parent.Start(systemBindingServer);
 else
 this.Start();
 }

• public Stop():void

This method calls the Stop method of the ComponentBinding. The code is

as following:
 public void Stop() {
 parent.Stop();
 this.stopped = true;

 }

• public ChangeLocationOfSystemBinding(string systemPath,

SystemBindingServer bindingServer):void

This method is called when the system changes its location. The

ComponentBindingServerBase notifies ComponentBinding the new path of the

binding of the system. The code is as following:
 public void ChangeLocationOfSystemBinding(string
systemPath, SystemBindingServer bindingServer) {

 parent.ChangeLocationOfSystemBinding(systemPath,
bindingServer);
 }

• public InitializeLifetimeService():object

This method overrides the remoting service InitializeLifetimeService(). The

method returns null indicating that the lifetime of the object is infinite. The code is

the following:
 public override object InitializeLifetimeService()

67

{
 return null;
 }

• public IsLive():bool

This method returns “true” if the thread is a live. The code is as following:

 public bool IsLive() { return true;}

• public Dispose():void

This method disposes the part of the attachment. The code is as following:
 public void Dispose() {

 }

Related Patterns.

No related Patterns

69

CHAPTER 4. CONCLUSIONS AND
FUTURE WORKS

70

As a conclusion, this chapter sums up the main contributions of the work, scientific

publications and gives some suggestions for further work.

4.1 Summary of the Contributions

The research of this work contributes as a first step in reaching the objective of

automatically generating distributed applications from a conceptual model. The MDA proposal

has been applied at all levels. A Platform Specific Model of the PRISMA distribution model has

been presented. Thus the attachments, binding and mobility specific models have been

described.

Next, the implementation patterns have been identified to automatically generate

distributed applications from the PRISMA distribution conceptual model. The implementation

patterns describe which base classes of the PRISMA distribution model implemented in C#

have to be extended to generate final distributed applications.

As a result of this work, a first step in building a model compiler for the PRISMA

architectutral model has been satisfied. Thus PRISMA becomes a framework to describe

distributed systems at an analysis and design level (conceptual level).

This work has been financed by a Microsfoft Research project for implementing a

teleoperation system using PRISMA. Thus, this work

4.2 Related Publications

This work is based on a set of research publications. The following international and

national publications were obtained:

• Nour Ali, Jose M. Cercos, Isidro Ramos, Patricio Letelier, Jose A. Carsi.

“Distribution in PRISMA” Actas de II jornadas de trabajo de DYNAMICA, Malaga,

Noviembre 2004. (To appear)

• Nour Ali, Jennifer Perez, Cristobal Costa, Jose A. Carsi, Isidro Ramos.

“Implementation of the PRISMA Model in the .Net Platform”, Actas de II jornadas

de trabajo de DYNAMICA, Malaga, Noviembre 2004. (To appear)

71

4.3 Further Work

In the near future the research is going to be concentrated on how to implement the

transformation patterns identified in this research. Some tools are going to be necessary to

implement them. After implementing the patterns a model compiler is going to build to

incorporate them to automatically generate the code from our specification model.

In addition, another important task is implementing the teleoperation case study using the

C# PRISMA model presented in this work. This case study is going to be used to test the

performance of our proposal.

Another important work is to implement the Distribution patterns discussed in [3]. These

patterns to be implemented in C# are going to increase the PRISMA middleware functionality

in distribution matters.

In addition, a case tool is going to be developed to incorporate textual and graphical

notation of PRISMA and patterns to enable develop the distributed applications in different

platforms and programming languages.

73

BIBLIOGRAPHY

[1] Ali, N., Carsi, J.A., Ramos, I. Analysis of a Distribution Dimension for PRISMA.

Actas Jornadas de Ingeniería del Software y Bases de Datos, JISBD, Malaga. (

To Appear Accepted as short paper)

[2] Ali, N.H., Perez J., Ramos I. “High Level Specification of Distributed and Mobile

Information Systems”, Proceedings of Second International Symposium on

Innovation in Information & Communication Technology ISIICT 2004, Amman,

Jordan, 21-22 April, 2004.

[3] Ali, N.H., Silva J., Jaen, J.,Ramos I., Carsi, J.A., and Perez J. Mobility and

Replicability Patterns in Aspect-Oriented Component-Based Software

Architectures. Proceedings of 15th IASTED, Parallel and Distributed Systems,

Acta Press (Marina del Rey, C.A., USA, November 2003), p 820-826.

[4] Aspect-Oriented Software Development, http://aosd.net

[5] Archer,T. and WhiteChapel, A. Inside C# second Edition. Copyright © 2002 by

Microsoft Corporation

[6] Balzer, R. Software Tech. in the 1990's: Using a new Paradigm", IEEE, 1983.

[7] Bernstein, P.A. Middleware: a model for distributed system services.

Communications of the ACM, Volume 39, Issue 2, February 1996 ISSN:0001-

0782, p 86-98.

http://aosd.net/

74

[8] Budinsky, F.J, Finnie, M.A, Vlissides, J.M and Yu, P.S. Automatic code

generation from design patterns. IBM Systems Journal. Volume 35, Object

technology, Number 2, 1996.

http://www.research.ibm.com/journal/sj/352/budinsky.html

[9] CORBA Official Web Site of the OMG Group: http://www.corba.org/

[10] Crupi, J. and Baerveldt, F. Implementing Sun Microsystems’ Core J2EE

Patterns. Compuware White Paper.

[11] Dhawan, P. Performance Comparison: .NET Remoting vs. ASP.NET Web

Services. Building Distributed Applications with Microsoft .NET. September

2002. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnbda/html/bdadotnetarch14.asp

[12] Dhawan, P. and Ewald, T. ASP.NET Web Services or .NET Remoting: How to

Choose Building Distributed Applications with Microsoft .NET. September 2002.

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnbda/html/bdadotnetarch16.asp

[13] Fuggetta, A., Picco, G.P., and Vigna, G. Understanding Code Mobility. In IEEE

Transactions on Software Engineering, 24(5): 342-361, 1998.

[14] Grau A., “Computer-Aided validation of formal conceptual models”, PhD. Thesis

Institute for Software, Information Systems Group, Technical University of

Braunschweig, March 2001.

[15] MDA web page: www.omg.com/mda

[16] Microsoft .Net Remoting : A Technical Overview,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dndotnet/html/hawkremoting.asp

[17] Oblog – Object Logic. “Oblog Software”, Oblog Software S.A. Lisboa, Portugal.

URL: http://www.info.fundp.ac.be/~phe/2rare/spd.html

[18] Pastor O. Et al, OO-METHOD: A Software Production Environment Combining

Conventional and Formal Methods, Procc. of 9th International Conference,

CaiSE97, Barcelona, 1997.

[19] Pérez, J., Ramos, I., Jaén, J., Letelier, P., Navarro, E. PRISMA: Towards

Quality, Aspect Oriented and Dynamic Software Architectures: 3rd IEEE

International Conference on Quality Software (QSIC 2003), Dallas, Texas, USA,

November 2003, p 59-66.

[20] Polo, M, Piattini, M. and Ruiz, F. Reflective Persistence (Reflective CRUD:

Reflective Create, Read, Update & Delete). Proceedings of Conference

EuroPlop 2001.

http://www.research.ibm.com/journal/sj/352/budinsky.html
http://www.corba.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch16.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch16.asp
http://www.omg.com/mda
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://www.info.fundp.ac.be/~phe/2rare/spd.html

75

[21] Rammer, I. Advanced .Net Remoting. A press; 1 edition (April 5, 2002), ISBN:

1590590252.

[22] Rational Software, Rational Rose, http://www.rational.com/products/rose/

[23] Sernadas A., Costa J.F., Sernadas C., "Object Specifications Through

Diagrams: OBLOG Approach" INESC Lisbon 1994.

[24] Siegel, J. and the OMG Staff Strategy Group. Developing in OMG’s Model-

Driven Architecture.Object Management Group White Paper, November, 2001.

[25] StrawMyer, M. .Net Remoting.

http://www.developer.com/net/cplus/article.php/10919_1479761_1

[26] Szyperski, C., Component software: beyond object-oriented programming, (New

York, USA: ACM Press and Addison Wesley, 2002).

[27] Troger, P. and Polze, A. Object and Process Migration in .NET .The Eighth IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems

(WORDS 2003), January 15 - 17, 2003,Guadalajara, Mexico.

[28] Thangarathnim,T. .NET Remoting Versus Web Services.

http://www.developer.com/net/net/article.php/11087_2201701_1

[29] Unified Modelling Language UML 2.0: http://www.omg.org/technology/uml

[30] Web Services Tutorials. See http://www.systinet.com/resources/tutorials

http://www.developer.com/net/cplus/article.php/10919_1479761_1
http://www.omg.org/technology/uml
http://www.systinet.com/resources/tutorials

77

Appendix A : PRISMA MAPPINGS TO C#

This appendix shows the whole mappings of the PRISMA model to C#. The mappings of

this appendix have been done in collaboration with PRISMA: Model Compiler of Aspect-
Oriented Component-Based Software Architectures members (Jennifer Perez, Cristobal

Costa, Jose Manuel Cercos and Rafael Cabedo).

PRISMA MODEL C#
Components Collection Class of Components

Interface Interface
Connectors Collection Class Component
Attachments Collection Class Attachments

Binding 2 classes one for the system and another
for the architectural element container in

the system.
The bindingSystem class acts as a server

of the binding of the architectural element
contained.

The other class for implementing the
binding side of the architectural element is

composed of a client and a Server side.
System System Class

COMPONENT

MODEL C #
Name Variable
Ports Collection of ports of a component. It is

divided into a client and a Server.
Interface A set of services that the middleware

invokes to manage the components.
Component A base class with referentes to aspects, a

proper thread, ports, weavings, a queue
for the services.

Queue= 2 classes, one for the nodes and
another for the priorities.

Aspects Variables with the aspects

Weavings Weaving Collection Clase = List of
Weavings associated to a component

Weaving Class Node = List of weavings
associated to the service which triggers

the weaving
Weaving Method Class= Class which

contains the service and the

78

transformation functions necessary for the
weaving parameters.

Weaving type Class= Types of weaving
Transformation Function= Transformation
Functions which pass parameters.

CONNECTOR

MODEL C #
Name Variable
Roles Collection of Ports (= component)

Interface Subclase of the component interface
Connector A composite component Class which is

identified as a connector for implementing
a connector interface (subclass of the
component interface)

SYSTEM

MODEL C #
Name Variable
Roles Collection of ports

Interface Subclass of the component interface ¡
System A subclass of component which contains

the list of components, connectors and
attachments and bindings.

ASPECT

MODEL C #
Aspect Type An internal variable of the aspect which is

assigned a value o fan enumerated type.
This type contains the list of aspect types

defined in the metamodel.
Name of Aspect A variable

Aspect Class with the list of subprocesses, thread,
(attributes and services)

Attributes Variables
Services 2 methods internal and external:

external= Queues the service petition and
returns the control to the component.

Internal= Executes the service
Valuations Implementation of the internal method to

which the valuation is associated.
Valuation Condition= if condition

Valuation Postcondition = Assigns the
values of the internal variables of the if

Preconditions If of the associated method condition.

79

This condition should be executed before
of an If valuation

Subprocesses Class which contains the name of the
subprocessed and the set of methods with

their priority

Protocol The set of the protocol states is stored in
an enumerated structure

If is used to check that the states are
correct, for allowing the execution of the
methods. The if should be checked before
the preconditions associated to a method.

The sequence of a state services are
implemented with the invocation of the

following method.
The state is updates at the end of a

method.

PORT

MODEL C #
Port C# base class without subprocessed with

two child classes for seperately treating
the client and Server behaviour.

Server = Passes the petitions to the
component queue

Client = Saves the invocation in a queue
in which an attachment listens.

Name Variable with name.
Interface Variable with interface

ATTACHMENTS

MODEL C #
Name Attachment Name

Attachment 2 attachment classes each associated to a
side ofthe communication channel through

the ports and components.
Each attachment class is formed of 2

classes, a client class and another Server
to process the the petitions in different

channels.

80

BINDINGS

MODEL C #
Name Name

Binding 2 classes one for the system the other for
the component or connector which forms

the system.
The bindingsystem class acts as a remote
Server for those components which reside
on another machine. The class which
implements the component and connector
is composed.

MIDDLEWARE

 PRISMA MODEL C #
PRISMA Metamodel A class with the evolution services,

manages the system and mobility.
LOC A class which manages the locations of

the different architectural elements of the
system.

Asynchronous A clase for managing the asynchronous
results of the services.

Exceptions Exceptions
Services priorities A queue and list class with priorities.
System Execution PRISMA Server which starts the

execution of the middleware. The
Framework initializes the application.

81

Appendix B: Implementation of a Simple Bank

Account using the PRISMA Distribution Model

in C#

B.1 Distribution Aspect of an Account

using System;
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Middleware;

namespace CuentaBancaria {

 /// <summary>Descripción del Aspecto de Distribución
EXTMBILE</summary>
 [Serializable]
 public class ExtMbile : DistributionAspectBase, IMobility {

 #region Definicion de Variables internas

 // Definición de los estados posibles del objeto
 protected enum protocolStates
 {
 EXTMBILE,
 MOVEMENT
 }

 // Almacena el estado actual del aspecto
 protected protocolStates estado;

 #endregion

 // Constructor del Aspecto: Inicialización
 public ExtMbile() : base("ExtMbile",
AspectType.Distribution)
 {
 // Inicializacion de las vbles internas
 estado = protocolStates.EXTMBILE;

 // Inicialización de las vbles del aspecto
 /*if (location.IsNull()) {// Cuando entre en el
StartAspect tendrá un valor
 throw new Exception("Location of component
can't be a NULL value");
 }*/

 // Creación de la estructura de subprocesos para este
acpecto
 SubProcessClass subProcessIMobility = new
SubProcessClass("SERVIDOR");
 subProcessIMobility.AddMethod("Move", 10);

82

 this.subProcessesList.Add(subProcessIMobility);

 // Alcanzamos el estado siguiente
 estado = protocolStates.MOVEMENT;
 }

 #region Miembros Externos de IMobility

 public AsyncResult Move(LOC newLoc) {
 // Encola la petición de mover para que sea servida
cuando acabe las peticiones anteriores
 _MoveDelegate moveDelegate = new
_MoveDelegate(this._Move);
 AsyncResult result = new AsyncResult(1);
 ClassQueueAspect classQueueAspect = new
ClassQueueAspect(moveDelegate,
 new object[] {newLoc},
System.Threading.Thread.CurrentThread, result);
 queuecallaspect.Enqueue(classQueueAspect);
 return result;
 }

 #endregion

 #region Miembros Internos de IMobility

 private delegate void _MoveDelegate(LOC newLoc);
 public void _Move(LOC newLoc) {
 // Comprobacion de que el protocolo actual es el
correcto
 if (estado != protocolStates.MOVEMENT) {
 throw new
InvalidProtocolStateException(this.aspectName, "Move");
 }

 // Comprobacion de las precondiciones asociadas
 // NO APLICABLE

 // Comprobación del estado anterior a la valuación
 // NO APLICABLE

 // Indica lo antes posible al componente que va a ser
movido
 link.IsStopping = true;

 // Llamada asíncrona al Middleware para que ejecute
el move y nosotros acabar
 // con lo que nos queda de este hilo
 MiddlewareSystem.MoveDelegate delegado = new
MiddlewareSystem.MoveDelegate(middlewareRef.Move);
 IAsyncResult iAR = delegado.BeginInvoke(newLoc,
link.componentName,
 new
AsyncCallback(MiddlewareSystem.MoveCallBack), delegado);

 middlewareRef.AddMessage("Location of " +
aspectType.ToString() + " aspect has changed to: "
 + location);

83

 // Comprobación de la activación de Triggers
 // NO APLICABLE

 // Nuevo estado alcanzado
 // estado = protocolStates.MOVEMENT;
 }

 #endregion

 /// <summary>Convierte una dirección postal en una
localización URL</summary>
 public LOC ChangeAddressToLOC(string newAdd) {
 LOC newLOC;

 if (newAdd != "") {
 // Equivalencia de calles a IPs
 if (newAdd.StartsWith("C/Mayor")) {newLOC = new
LOC("tcp://sigil.dsic.upv.es"); }
 else {
 if (newAdd.StartsWith("C/Menor")) {newLOC
= new LOC("tcp://garbi.dsic.upv.es"); }
 else {
 if (newAdd.StartsWith("C/Medio"))
{newLOC = new LOC("tcp://grid001.dsic.upv.es"); }
 else {
 if
(newAdd.StartsWith("C/Lado")) {newLOC = new
LOC("tcp://poypoy.dsic.upv.es"); }
 else {
 // Sino, se queda en el
equipo local
 newLOC = new
LOC("tcp://localhost");
 }

 }
 }
 }
 }
 else { newLOC = new LOC("tcp://localhost"); }

 return newLOC;
 }
 public delegate LOC ChangeAddressToLOCDelegate(string
newAdd);
 }}

B.2 Attachments of the Bank System

using System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Attachments;

84

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "ICreditCardTransactions"
 /// </summary>
 [Serializable]
 public class AttachmentICreditCardTransactionsClient :
AttachmentClientBase {

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public AttachmentICreditCardTransactionsClient(IComponent
component, string portName, string attachmentName)
 : base(component, portName, attachmentName) {}

 /// <summary>
 /// Procesa una petición de servicio, encapsulada en un
objeto de tipo ClassQueueAttachment
 /// </summary>
 public override void Process(ListenersQueue queue) {
 try {
 // Miramos si la petición de este servicio es
para que el actual attachment o para otro con la misma interfaz
 // o si es un broadcast
 //if ((queue.NameRequest == remoteName) ||
(queue.NameRequest == null))
 switch(queue.NombreServicio) {
 case "ChangeAddress": {
 string arg0 =(string)queue.Args[0];
 AsyncResult result =
((ICreditCardTransactions) remote).ChangeAddress(arg0);

 queue.Result.SetDerivedParameters(result);
 break;
 }
 case "Withdrawal": {
 decimal arg0
=(decimal)queue.Args[0];
 decimal arg1
=(decimal)queue.Args[1];
 Console.WriteLine("[SALIDA] Envio
una peticion de WithDrawal - " + DateTime.Now.Second +
 ":" +
DateTime.Now.Millisecond);
 AsyncResult result =
((ICreditCardTransactions) remote).Withdrawal(arg0, ref arg1);

 queue.Result.SetDerivedParameters(result);
 break;
 }
 case "Balance": {
 decimal arg0
=(decimal)queue.Args[0];
 AsyncResult result =
((ICreditCardTransactions) remote).Balance(ref arg0);

85

 queue.Result.SetDerivedParameters(result);
 break;
 }
 case "Transfer": {
 decimal arg0
=(decimal)queue.Args[0];
 decimal arg1
=(decimal)queue.Args[1];
 AsyncResult result =
((ICreditCardTransactions) remote).Transfer(arg0, ref arg1);

 queue.Result.SetDerivedParameters(result);
 break;
 }
 default:
 break;
 }
 }catch(Exception e) {
 throw e;
 }
 }
 }
}

using System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Attachments;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "ICreditCardTransactions"
 /// </summary>
 [Serializable]
 public class AttachmentICreditCardTransactionsServer :
AttachmentServerBase, ICreditCardTransactions {

 private ICreditCardTransactions InPortOfComponent;

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public AttachmentICreditCardTransactionsServer(Attachment
attach) : base (attach) {
 InPortOfComponent = (ICreditCardTransactions)
Component.InPorts[attach.PortName];

 if (InPortOfComponent == null) {
 throw new Exception("ICreditCardTransactions's
InPort does not exists in " +
 Component.componentName + " component.");
 }
 }

86

 /* REDIRECCIÓN DE LOS SERVICIOS HACIA EL COMPONENTE DESTINO
*/

 public PRISMA.AsyncResult ChangeAddress(string newAdd) {
 return InPortOfComponent.ChangeAddress(newAdd);
 }

 public PRISMA.AsyncResult Withdrawal(decimal quantity, ref
decimal money) {
 Console.WriteLine("[LLEGADA] Recibo una peticion de
WithDrawal - " + DateTime.Now.Second +
 ":" + DateTime.Now.Millisecond);
 return InPortOfComponent.Withdrawal(quantity, ref
money);
 }

 public PRISMA.AsyncResult Balance(ref decimal money) {
 try {
 return InPortOfComponent.Balance(ref money);
 } catch (Exception e) {
 Console.WriteLine("sdfsd");
 //throw e;
 AsyncResult result = new AsyncResult(1);
 result.ThrowExceptionToClient(e);
 return result;
 }

 }

 public PRISMA.AsyncResult Transfer(decimal quantity, ref
decimal money) {
 return InPortOfComponent.Transfer(quantity, ref
money);
 }
 }
}

using System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Attachments;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "IMobility"
 /// </summary>
 [Serializable]
 public class AttachmentIMobilityClient : AttachmentClientBase {

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public AttachmentIMobilityClient(IComponent component,
string portName, string attachmentName)
 : base(component, portName, attachmentName) {}

87

 /// <summary>
 /// Procesa una petición de servicio, encapsulada en un
objeto de tipo ClassQueueAttachment
 /// </summary>
 public override void Process(ListenersQueue queue) {

 // Miramos si la petición de este servicio es para
que el actual attachment o para otro con la misma interfaz
 // o si es un broadcast
 //if ((queue.NameRequest == remoteName) ||
(queue.NameRequest == null))
 try{
 switch(queue.NombreServicio) {
 case "Move": {
 LOC arg0 =(LOC)queue.Args[0];
 AsyncResult result = ((IMobility)
remote).Move(arg0);

 queue.Result.SetDerivedParameters(result);
 break;
 }
 default:
 break;
 }
 }catch (Exception e) {
 throw e;
 }
 }
 }
}

using System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Attachments;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "IMobility"
 /// </summary>
 [Serializable]
 public class AttachmentIMobilityServer : AttachmentServerBase,
IMobility {

 private IMobility InPortOfComponent;

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public AttachmentIMobilityServer(Attachment attach) : base
(attach) {
 InPortOfComponent = (IMobility)
Component.InPorts[attach.PortName];

88

 if (InPortOfComponent == null) {
 throw new Exception("IMobility's InPort does
not exists in " +
 Component.componentName + " component.");
 }
 }

 /* REDIRECCIÓN DE LOS SERVICIOS HACIA EL COMPONENTE DESTINO
*/

 public PRISMA.AsyncResult Move(PRISMA.LOC newLoc) {
 // AttachmentAccount.Move no está publicado, por lo
que no se puede acceder
 return InPortOfComponent.Move(newLoc);
 }
 }

B.3 Bindings of the Bank System Example

sing System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Bindings;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "ICreditCardTransactions"
 /// </summary>
 [Serializable]
 public class BindingICreditCardTransactionsClient :
ComponentBindingClientBase {

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public BindingICreditCardTransactionsClient(IComponent
component, string portName, string bindingName)
 : base(component, portName, bindingName) {

 // Añadimos los métodos que reconocerá este CLIENTE
 AddValidMethodsToListen("ChangeAddress",
"Withdrawal", "Balance", "Transfer");
 }
 }
}

using System;

using PRISMA;

89

using PRISMA.Components;
using PRISMA.Bindings;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "ICreditCardTransactions"
 /// </summary>
 [Serializable]
 public class BindingICreditCardTransactionsServer :
ComponentBindingServerBase, ICreditCardTransactions {

 private ICreditCardTransactions InPortOfComponent;

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public
BindingICreditCardTransactionsServer(ComponentBinding compBind) : base
(compBind) {
 InPortOfComponent = (ICreditCardTransactions)
component.InPorts[compBind.PortName];

 if (InPortOfComponent == null) {
 throw new Exception("ICreditCardTransactions's
InPort does not exists in " +
 component.componentName + " component.");
 }
 }

 /* REDIRECCIÓN DE LOS SERVICIOS HACIA EL COMPONENTE DESTINO
*/

 public PRISMA.AsyncResult ChangeAddress(string newAdd) {
 if (stopped)
 throw new
PRISMA.IsMovingComponentException(this.BindingName());
 return InPortOfComponent.ChangeAddress(newAdd);
 }

 public PRISMA.AsyncResult Withdrawal(decimal quantity, ref
decimal money) {
 if (stopped)
 throw new
PRISMA.IsMovingComponentException(this.BindingName());
 return InPortOfComponent.Withdrawal(quantity, ref
money);
 }

 public PRISMA.AsyncResult Balance(ref decimal money) {
 if (stopped)
 throw new
PRISMA.IsMovingComponentException(this.BindingName());
 return InPortOfComponent.Balance(ref money);
 }

90

 public PRISMA.AsyncResult Transfer(decimal quantity, ref
decimal money) {
 if (stopped)
 throw new
PRISMA.IsMovingComponentException(this.BindingName());
 return InPortOfComponent.Transfer(quantity, ref
money);
 }

 }
}

using System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Bindings;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "IMobility"
 /// </summary>
 [Serializable]
 public class BindingIMobilityClient : ComponentBindingClientBase
{

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public BindingIMobilityClient(IComponent component, string
portName, string bindingName)
 : base(component, portName, bindingName) {

 // Añadimos los métodos que reconocerá este CLIENTE
 AddValidMethodsToListen("Move");
 }
 }
}

using System;

using PRISMA;
using PRISMA.Components;
using PRISMA.Bindings;

namespace CuentaBancaria {

 /// <summary>
 /// Clase generada automáticamente al generarse el código de la
interfaz "IMobility"
 /// </summary>
 [Serializable]
 public class BindingIMobilityServer :
ComponentBindingServerBase, IMobility {

91

 private IMobility InPortOfComponent;

 /// <summary>
 /// Constructor - Llama al padre
 /// </summary>
 public BindingIMobilityServer(ComponentBinding compBind) :
base (compBind) {
 InPortOfComponent = (IMobility)
component.InPorts[compBind.PortName];

 if (InPortOfComponent == null) {
 throw new Exception("IMobility's InPort does
not exists in " +
 component.componentName + " component.");
 }
 }

 /* REDIRECCIÓN DE LOS SERVICIOS HACIA EL COMPONENTE DESTINO
*/

 public PRISMA.AsyncResult Move(PRISMA.LOC newLoc) {
 if (stopped) {
 throw new
PRISMA.IsMovingComponentException(this.BindingName());
 }
 return InPortOfComponent.Move(newLoc);
 }
 }

}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

