

Universidad Politécnica de Valencia

Departamento de Sistemas Informáticos y Computación

 DISTRIBUTION IN AN ASPECT-
ORIENTED COMPONENT BASED

SOFTWARE ARCHITECTURE THROUGH
PRISMA

“DISTRIBUCIÓN EN UNA ARQUITECTURA SOFTWARE ORIENTADA A

ASPECTOS Y COMPONENTES PRISMA”

Programa de Doctorado: Programación Declarativa e Ingeniería de la Programación

Nour Ali

Dirigido por: Dr. Isidro Ramos Salavert

Dr. Jose Ángel Carsí Cubel

Valencia, Septiembre 2004

ABSTRACT

This research work provides a conceptual model for specifying distributed systems. The

conceptual model describes how distributed software architectures can be described through

PRISMA. PRISMA, is an architectural model which combines the Aspect-Oriented Software

Development (AOSD) and the Component-Based Software Development (CBSD). Therefore,

PRISMA has been extended incorporating primitives that allow the mobility, replication and

distributed communication of its architectural elements. In addition, the PRISMA Architecture

Description Language (ADL) incorporates the constructs for the distribution model. A graphical

notation for the distribution primitives in PRISMA ADL is defined.

In addition, this research describes some distribution patterns. Theses patterns describe

situations in which the software architecture needs to reconfigure its location topology at run-

time either by moving or replicating its architectural elements to cope with fault tolerance

problems, new system requirements or other changes in the performance of the software

architecture. The patterns are presented through a template to enable their understanding and

reusability. The PRISMA ADL has been used to describe them.

ACKNOWLEDGMENTS

This work is dedicated for all those who believe in peace and harmony.

To my parents, for their love, care and encouragement.

 To my brother and sisters, Mohamed, Majd and Dana, and to all my Family

To Isidro, for accepting me as a student,

To Pepe, for his comments and advisments

I will gratitude you eternally

To Jenny, Pato and Javi,

For the time they once spent discussing this research,

For interchanging their knowledge

In areas as software architectures, evolution, modelling, distribution and mobility.

I thank the ISSI group for accepting me as another member

 To Hilario for sending mails which are so funny,

To Isidro, Mari Carmen, Pepe, Pato and Javi,

To my Lab partners Carlos, Manolo, Artur, Maria Eugenia, And my wonderful
Elena and Jenny

To Isa, Gonzalo, Manolo, Artur, Carlos and Elena,

 All of you form part of my “Vella” Family,

 For the wonderful times I spent with you

Javi, Jenny and Nelly

To my home and land, to my holy children

I ask God to make your future bright

And to live peacefully.

TABLE OF CONTENTS
TABLE OF CONTENTS..7

LIST OF FIGURES...11

LIST OF TABLES...13

CHAPTER 1. INTRODUCTION...15

1.1 RESEARCH OBJECTIVES...16
1.2 PRISMA ARCHITECTURAL MODEL...16

1.2.1 AOSD in PRISMA...16
1.2.2 CBSD in PRISMA ...18
1.2.3 PRISMA’s Meta-Level ..20
1.2.4 PRISMA ADL..21

1.3 STRUCTURE OF THE DOCUMENT..21

CHAPTER 2. AN OVERVIEW OF THE RELATED WORKS ...23

2.1 INTRODUCTION..23
2.2 DISTRIBUTED SYSTEMS ...23
2.3 ASPECT-ORIENTED SOFTWARE DEVELOPMENT (AOSD). ...25

2.3.1 Distribution Aspects..27
2.3.2 Replication Aspects...28

2.4 SOFTWARE ARCHITECTURES ...28
2.4.1 Architecture Description Languages Supporting Distributed Systems.......................29

2.5 GRAPHICAL NOTATION FOR DISTRIBUTED AND MOBILE SYSTEMS31
2.6 SUMMARY AND CONCLUSIONS..32

CHAPTER 3. THE DISTRIBUTION MODEL IN PRISMA..33

3.1 INTRODUCTION..33
3.2 INCORPORATION OF A DISTRIBUTION MODEL TO PRISMA...34

3.2.1 AOSD view of the Distribution Model of PRISMA ...34

3.2.1.1 The Distribution Aspect.. 35
3.2.1.2 The Replication Aspect... 37

3.2.2 The architectural View of Distribution ...39
3.3 THE ARCHITECTURE DESCRIPTION LANGUAGE...41

3.3.1 The Type Definition Language ...42
3.3.1.1 Interfaces .. 42
3.3.1.2 Aspects ... 42
3.3.1.3 Architectural elements .. 48

3.3.2 The Configuration Language..52
3.4 MOBILITY, REPLICATION AND RECONFIGURATION ...57
3.5 PRISMA’S INFRASTRUCTURE FOR DISTRIBUTION ..57
3.6 A DISTRIBUTION ANALYSIS FOR PRISMA ...58

3.6.1 Case1: Components and Connectors are Unaware of their Distribution...................59
3.6.2 Case 2: Components and Connectors are Aware of their Distribution by adding a

Distribution Aspect. ..62
3.6.3 The Actual Distribution Model in PRISMA ..64

3.7 SUMMARY AND CONCLUSIONS..65

CHAPTER 4. CONCEPTUAL DISTRIBUTION PATTERNS FOR PRISMA67

4.1 INTRODUCTION..67
4.2 MOBILITY AND REPLICATION RECONFIGURATION PATTERNS IN PRISMA68
4.3 MOBILITY RECONFIGURATION PATTERNS ...72

4.3.1 MP.01- Pattern: Excess of the arrival rate...72
4.3.2 MP.02- Pattern: Excess of the request rate. ...78
4.3.3 MP.03- Pattern: Excess in the volume of data interchanged......................................83
4.3.4 MP.04- Pattern: Excess of latency. ..87
4.3.5 MP.05- Pattern: Change in system requirements...91

4.4 REPLICATION RECONFIGURATION PATTERNS..95
4.4.1 RP.01- Pattern: Unbalanced load. ...96
4.4.2 RP.02- Pattern: Excess of the volume of data. ...102
4.4.3 RP.03- Pattern: Excess of latency. ...108
4.4.4 RP.04- Pattern: System Requirements and Configuration Adaptation.....................114

4.5 EXAMPLE: AN ARCHITECTURAL ELEMENT SPECIFYING MORE THAN A DISTRIBUTION

PATTERNS 119
4.6 SUMMARY AND CONCLUSIONS..123

CHAPTER 5. GRAPHICAL NOTATION FOR DISTRIBUTION IN PRISMA................125

5.1 INTRODUCTION..125
5.2 BASES TO DEFINE A UML PROFILE..126
5.3 BACKGROUND OF THE PRISMA PROFILE..127
5.4 THE UML PROFILE FOR THE DISTRIBUTION MODEL..128

5.4.1 Distribution Aspect ...128

9

5.4.2 Replication Aspect ..131
5.5 SUMMARY AND CONCLUSIONS..133

CHAPTER 6. CONCLUSIONS AND FURTHER WORK..135

6.1 SUMMARY OF THE CONTRIBUTIONS ..135
6.2 RELATED PUBLICATIONS...136
6.3 FURTHER WORK..137

BIBLIOGRAPHY ...139

LIST OF FIGURES
FIGURE 1 THE ARCHITECTURAL ELEMENT SEEN AS A PRISM IN THE AOSD POINT OF VIEW . 17
FIGURE 2 THE WEAVING IS PERFORMED EXTERNALLY TO THE ASPECTS 18
FIGURE 3 THE EXTERNAL VIEW OF AN ARCHITECTURAL ELEMENT AS A BLACK BOX WITH THE

PORTS OR ROLES FOR COMPONENTS OR CONNECTORS, RESPECTIVELY 19
FIGURE 4 THE UML PACKAGE OF THE PRISMA ARCHITECTURAL MODEL IN THE META-

LEVEL. ... 20
FIGURE 5 ASPECT REIFICATION PROCESS... 21
FIGURE 6 THE TANGLING CODE IN THE TRADITIONAL PROGRAMMES IS SHOWN IN (A) AND

THE SEPARATED CODE IN ASPECT-ORIENTED PROGRAMMING IN (B). 26
FIGURE 7 PADA’S STRUCTURE ... 27
FIGURE 8 AN ILLUSTRARION USED BY DAVID GARLAN TO SHOW THE ROLE OF SOFTWARE

ARCHITECTUES .. 29
FIGURE 9 A PRISMA ARCHITECTURAL ELEMENT WITH A DISTRIBUTION AND REPLICATION

ASPECT. .. 34
FIGURE 10 THE DISTRIBUTION AND REPLICATION ASPECT ADDED TO THE ASPECT PACKAGE

OF THE PRISMA META-MODEL ... 35
FIGURE 11 DISTRIBUTION ASPECT PACKAGE OF THE PRISMA META-MODEL 37
FIGURE 12 REPLICATION ASPECT PACKAGE OF THE PRISMA META-MODEL...................... 38
FIGURE 13 A DISTRIBUTED ARCHITECTURAL MODEL IN PRISMA CONNECTED WITH

ATTACHMENTS AND BINDING LINKS.. 39
FIGURE 14 THE ATTACHMENTS PACKAGE OF THE PRISMA META-MODEL.......................... 40
FIGURE 15 THE BINDINGS PACKAGE THE PRISMA META-MODEL 40
FIGURE 16 REPRESENTING THE LOCATIONS OF THE ARCHITECTURAL MODEL EXAMPLE OF

FIGURE 13 HIERARCHICALLY... 41

FIGURE 17 A DISTRIBUTED ARCHITECTURAL MODEL OF A SIMPLE BANK SYSTEM OF AN

ACCOUNT AND ATM ... 53
FIGURE 18 A SYSTEM ARCHITECTURAL ELEMENT OF A DISTRIBUTED BANK SYSTEM 56
FIGURE 19 PRISMA INFRASTRUCTURE... 58
FIGURE 20 DISTRIBUTED ADMINISTRATOR AND ACCOUNT CONNECTED IN A BANK SYSTEM

ARCHITECTURAL MODEL ... 59
FIGURE 21 PATTERNS IN SOCCER ... 67
FIGURE 22 STORAGE OF PATTERN SPECIFICATION IN A REPOSITORY............................... 68
FIGURE 23 USE OF PATTERNS FOR THE DEVELOPMENT PROCESS IN PRISMA. 69
FIGURE 24 4-LEVEL METAMODELING FRAMEWORK .. 126
FIGURE 25 THE STEREOTYPE <<ASPECT>> EXTENDS CLASS.. 127
FIGURE 26 THE <<DISTRIBUTION ASPECT>> STEREOTYPE EXTENDS <<ASPECT>>......... 129
FIGURE 27 THE STEREOTYPE <<REPLICATION ASPECT>> EXTENDS THE STEREOTYPE

<<ASPECT>> ... 132

LIST OF TABLES
TABLE 1 INSTANCES OF COMPONENTS AND CONNECTORS UNAWARE OF THEIR LOCATION

AND ATTACHMENTS ARE THE ENTITIES THAT ARE LOCATION AWARE OF THE INSTANCES

THEY ATTACH... 59
TABLE 2 INSTANCES OF COMPONENTS AND CONNECTORS ARE THE ONLY ENTITIES OF THE

ARCHITECTURE AWARE OF THEIR LOCATIONS THROUGH THEIR DISTRIBUTION ASPECT. 62
TABLE 3 THE CONTRIBUTION OF EACH DISTRIBUTION APPROXIMATION ON THE PRISMA

MODEL... 64
TABLE 4 COMPONENTS AND CONNECTORS ARE AWARE AND CONTROL THEIR LOCATIONS. IN

ADDITION THE ATTACHMENTS ARE LOCATION AWARE OF THE INSTANCES THEY ATTACH.64
TABLE 5 THE PRISMA INFRASTRUCTURE SERVICES FOR THE SPECIFICATION OF THE

DISTRIBUTION PATTERNS.. 70
TABLE 6 THE MOBILITY RECONFIGURATION PATTERNS EXPLAINED IN THIS SECTION 72
TABLE 7 REPLICATION RECONFIGURATION PATTERNS EXPLAINED IN THIS SECTION........... 95
TABLE 8 THE <<DISTRIBUTION ASPECT>> STEREOTYPE... 128
TABLE 9 THE MOBILITY META ATTRIBUTE ... 129
TABLE 10 THE <<REPLICATION ASPECT>> STEREOTYPE REPRESENTED IN A TABULAR WAY.131

TABLE 11 THE REPLICABLE META-ATTRIBUTE ... 132

 14

CHAPTER 1. INTRODUCTION

Nowadays, information systems are large and complex to develop. An important factor

that influences in this complexity is that information systems are tending to be distributed with

mobile components. Many technologies have emerged in dealing with distribution issues at an

implementation level. On the other hand, few approaches have dealt with distribution at a high

abstraction level. Nevertheless, considering distribution in the whole life cycle of software

development minimizes time and costs. Thus, efforts are reduced in the development process

by taking into account distribution at an early phase, instead of only introducing it at the

implementation phase.

Moreover, considering distribution at analysis and design phases of software

development generates high quality distributed applications. This increment of quality is due to

taking into account distribution from the beginning of software development so applications are

prepared to support its non-functional requirements. However, if distribution is not considered

from the beginning, applications should be changed when they arrive to an implementation

phase because they are not prepared to support distribution and the traceability between

phases of the life cycle is usually lost.

Actually, many CASE tools are able to generate applications following the automatic

prototyping paradigm which was proposed by Balzer [8]. They are called model compilers and

are able to automatically generate applications from conceptual models. During the last

decade, the research efforts were dedicated to formalize the models to automatically generate

applications mainly using the object oriented paradigm such as OASIS [51], Oblog[50] or Troll

[23].

As a consequence of the poor capability of the object-oriented software development to

describe complex structures of distributed information systems, the Component-Based

Software Development (CBSD) and the Aspect-Oriented Software Development (AOSD) have

emerged. The CBSD [68] promises to control the complexity of system construction by

 16

coupling entities that provide specific services. The AOSD [7] allows separation of concerns by

modularizing crosscutting concerns in a separate entity: the aspect. Aspects can be reused

and manipulated independently of the rest of properties of the system. However, currently no

model compilers exist that combine the CBSD and AOSD to generate distributed applications.

In Section 1.1 of this chapter, the objectives of the research work are introduced; then a

brief presentation of the PRISMA architectural model. Finally, the structure of the document is

presented.

1.1 Research Objectives

The objective of this research work is to provide conceptual models with the PRISMA

specification language and the graphical notation for the description of distributed software

systems using the CBSD and AOSD.

The necessary distribution primitives are included in PRISMA [54] architectural models in

order to be able to describe the architectures of distributed systems. In this way, PRISMA

becomes a modelling specification language of distributed systems through specifying the

distribution properties at the analysis and design phases of software development.

In the future, the PRISMA architectural model is pretended to become a framework that

permits the automatic generation of distributed information systems. For the possibility of this

framework the OASIS conceptual model languages have been extended to preserve its

evolution and code generation capacity.

1.2 PRISMA Architectural Model

PRISMA [54] is a model that integrates the component based software development [68]

(CBSD) and the aspect oriented software development [7] (AOSD) to define architectural

models. In addition, PRISMA has reflexive properties through a meta-level that allows the

architectural elements to evolve and to reconfigure dynamically at execution time. PRISMA

defines its architectures by using an architecture description language (ADL) that describes the

architectural models at two levels: the type definition level and the configuration level.

1.2.1 AOSD in PRISMA

An information system is characterized through a set of concerns. These concerns which

are common in a system (crosscutting concerns) are separated in the PRISMA model in

reusable entities called aspects. In addition, these entities do not only increase the reusability

but also improve the maintenance of the architectural models due to the fact that the

modification of a concern only affects on its proper characteristics which are not tangled but

centralized.

17

PRISMA uses the AOSD to define the internal behaviour and structure of its architectural

elements (white box). Each characteristic of the architectural element is separated in an

aspect. The aspects that define an architectural element depend on the information system.

Each architectural element of an information system can be seen as a prism in its AOSD point

of view (the internal view of the architecture element). Each face of the prism is an aspect that

defines a specific characteristic. For example, the AOSD view of the architectural element in

Figure 1 could belong to a web distributed information system which takes into account

context awareness, quality, navigational and security features.

NAVEGATIONAL

SECURITY
DISTRIBUTION

QUALITY

FUNCTIONAL

CONTEXT
AWARENESS

M
E

TA

LE
V

E
L

B
A

SE

LE
VE

L

NAVEGATIONAL

SECURITY
DISTRIBUTION

QUALITY

FUNCTIONAL

CONTEXT
AWARENESS

M
E

TA

LE
V

E
L

B
A

SE

LE
VE

L

Figure 1 The architectural element seen as a prism in the AOSD point of view

The following aspects and others can be used to describe architectural elements varying

in different application domains:

• Functional Aspect: The functional aspect captures the semantics of the

information system by defining its attributes and behaviour.

• Coordination Aspect: The coordination aspect defines the business rules and

the synchronisations between architectural elements during their communication.

• Context-Awareness: The context-awareness aspect [29] provides information

about the context and supports the analysis for retrieving structural properties of

the provided information.

• Quality Aspect: The quality aspect specifies quality non-functional requirements.

It defines the quality attributes that a system needs to evaluate and the quality

level that an architectural element needs to satisfy.

• Navigational Aspect: The navigational aspect specifies the hyperlinks of the

components and the multimedia information they contain.

 18

As architectural elements are formed by a set of aspects, these aspects should be

synchronized in order to define the overall behaviour of an architectural element. The

synchronizations among the aspects are the aspect weavings [52]. The weavings among the

different aspects of an architectural element is defined externally to the aspects in order to

provide the total reusability of the aspects in different architectural elements. The weaving is

done in such a way to perform the gluing among the aspects and adapt each aspect to the

requirements of the architectural elements performance (see Figure 2). Therefore, the

weavings of the aspects are defined in the architectural elements specification.

Aspect1

Aspect2 Aspect3

Weaving
Weavin

g

Weaving

Aspect1

Aspect2 Aspect3

Aspect1Aspect1

Aspect2Aspect2 Aspect3Aspect3

Weaving
Weavin

g

Weaving

Aspect2
Aspect3

Aspect1

W
eaving

W
eaving

Aspect2
Aspect3

Aspect1

W
eaving

W
eaving

Aspects with their weaving. Internal View of an architectural element

Figure 2 The weaving is performed externally to the aspects

The synchronizations of the aspects is done by defining the order of execution of the

services of each cooperating aspect. Therefore the weaving process is defined through

methods. The weaving methods are temporal operations that describe the temporal order of

the weaving process. For simplicity, we have the after, before and around methods that are

typical to the AspectJ [31] methods which their semantics are as follows:

 -after: aspect1.service is executed after aspect2.service

 -before: aspect1.service is executed before aspect2.service

-around: aspect1.service is executed except of aspect2.service.

1.2.2 CBSD in PRISMA

The CBSD separates the parts of the system into reusable entities called architectural

elements that provide specific services. The PRISMA architectural model has the following

architectural elements following the CBSD point of view (black box) (see Figure 3):

19

• Components: A component is an architectural element that represents part of the

functionality of the information system and does not act as a coordinator among

other architectural elements. Each component is formed by an identification

function, a set of aspects (functional, context-awareness, etc), the internal

synchronization of the aspects and one or more ports which’s type is a

determined interface, which publishes a set of services that are offered and

received to and from the environment.

• Connectors: A connector is an architectural element that acts as a coordinator

among different architectural elements. A connector is formed by an identification

function, a set of aspects (coordination, context-awareness), the weaving of the

aspects and one or more roles which’s type is a determined interface. The roles

represent the interaction points of the different architectural elements that a

connector coordinates.

• Systems: A system is a complex architectural element that contains attached

components, connectors and other systems. The system can be seen as a

component that has its own ports that offer and receive services. The connection

relation that establishes a communication channel between the instances of the

architectural elements is called an attachment. An attachment connects a

component port with a connector role. The specification of the connection among

the elements that a system includes and the system itself is done through the

bindings. The bindings are the connections between the ports of the system and

the ports or roles of the encapsulated elements.

Figure 3 The external view of an architectural element as a black box with the ports
or roles for components or connectors, respectively

An architectural model is a set of instances of components, systems and connectors

interconnected between them. For this reason, the instantiation of the architectural elements of

a model and the established connections between them are necessary in order to obtain an

executable architectural model. A PRISMA architectural model is defined by reusing the

different architectural elements that have been defined and stored previously in the PRISMA

library. The architectural model is defined by using the attachments connection relationship

 20

which is the same as the attachments relationship used to define the architectural element

system.

1.2.3 PRISMA’s Meta-Level

PRISMA models have reflexive capabilities through a meta-level. The meta-level permits

schema definitions to be converted to data and enable their modification achieving the capacity

to evolve such schemas. PRISMA meta-model [55] is defined through meta-classes for each

element of a PRISMA architectural model which can evolve and reconfigure. In Figure 4, the

meta-model of a PRISMA architectural element is shown. As it can be seen each PRISMA

concept and its relationship with the other concepts is defined using the meta-classes such as

the meta-class component or connector.

Figure 4 The UML package of the PRISMA architectural model in the meta-level.

PRISMA uses the same approximation used for OASIS schemas in the works of Carsí

[13]. Nevertheless, a difference between the OASIS approximation and PRISMA´s is that the

meta-level can be generated from the base-level through a reification process. The reification

process consists in the partial automatic generation of the needed meta-level to evolve a

specific architectural model. The reification process generates the code of the needed meta-

classes and their meta-objects in order to evolve the sections of the architecture that are

considered volatile. The PRISMA compiler generates the meta-level by only using the sections

of the meta-model which allow it to evolve the volatile part of the architecture.

For example, Figure 5 shows the reification process of an aspect. Each aspect of a type

has a base level and may have a meta-level. The reification is done from the base level. For

21

this reason, it is impossible for a type to specify its meta-level without specifying its base level.

An aspect defines a meta-level if it reifies some property of the base level.

Figure 5 Aspect Reification Process

1.2.4 PRISMA ADL

The PRISMA ADL extends the OASIS [33] (Open Active Software Information Systems)

language. This has been necessary in order to allow the description of software architecture

concepts such as components, connectors, architectural models, etc. On the other side, the

definition of aspects in the language has the OASIS template for defining classes.

The interfaces, aspects, architectural elements (components and connectors) are

specified in the PRISMA ADL at the type level as first order citizens of the language. Each first

order citizen type is stored in a PRISMA library to enable their reusability, not only in the same

architectural model but also in different ones. For example, the same functional aspect can be

reused in different components that have the same functionality and can be reused in different

components of different architectural elements.

Last but not least, an architectural model (see Figure 4) is defined by using the PRISMA

ADL at the configuration level. At the configuration level the architectural model is defined by

importing the types it needs from the PRISMA library defined in the type level and instantiating

them. Next, the topology of the architecture is specified by attaching components and

connectors through an entity called the attachments.

1.3 Structure of the Document

This work is divided into six chapters. In the following the content of each of the chapters

is briefly described:

Chapter 2 presents the related work to ours. The state of art of the component based

software development, the aspect oriented software development, architecture description

 22

languages for distributed systems, aspect oriented software development for distributed

systems are pointed out.

Chapter 3 introduces the distribution model of PRISMA. The PRISMA metamodel

incorporates to it the necessary concepts to enable it to be distributed, mobile and replicable.

The concepts are incorporated following the integration of the AOSD and CBSD of PRISMA.

Such that distribution and replication aspects are introduced and the attachments and binding

links are extended to become location aware. Then, the architecture description language

(ADL) at the type definition level and configuration level for the concepts introduced are fully

explained. Next, a brief introduction of the PRISMA infrastructure is introduced. Finally, a brief

explanation is given to show how the different decisions to reach the final model where taken.

Chapter 4 describes some distribution patterns. Theses patterns describe situations in

which the software architecture needs to reconfigure its location topology at run-time either by

moving or replicating its architectural elements to cope with fault tolerance problems, new

system requirements or other changes in the performance of the software architecture. The

patterns are presented through a template to enable their understanding and reusability. The

PRISMA ADL has been used to describe them.

Chapter 5 defines a graphical notation for the distribution primitives in PRISMA ADL

defined in this work. This is done by extending OMG’s Unified Modelling Language (UML)

through incorporating the distribution primitives to the PRISMA profile.

Chapter 6 sums up the main contributions of the work and suggest some future works.

CHAPTER 2. AN OVERVIEW OF THE

RELATED WORKS

2.1 Introduction

This chapter presents an overview of the topics related to the research presented in this

work. In section 2.2, the different distributed systems technologies and proposals are

introduced. Section 2.3, gives an overview of the AOSD and how it has been used in other

works for distribution, mobility and replication. Section 2.4, discusses software architectures

and ADLs that have been proposed for distribution system. Finally, some graphical notations

proposed for distributed and mobile systems are presented.

2.2 Distributed Systems

“A distributed system is a collection of autonomous hosts that are connected through a

computer network. Each host executes components and operates a distribution middleware,

which enables the components to coordinate their activities in such a way that users perceive

the system as a single, integrated computing facility.”

- Wolfang Emmerich

Nowadays, distributed systems are built using distributed object or component

middleware. The role of middleware is to ease the task of programming and managing

distributed applications. It is a distributed software layer, or ‘platform’ which abstracts over the

complexity and heterogeneity of the underlying distributed environment with its multitude of

network technologies, machine architectures, operating systems and programming languages.

In the following a brief explanation of the most recent proposals using middlewares are

presented:

 24

• OMG’s CORBA [17] is an object based middleware which offers an interface

definition language (IDL) and an object request broker (ORB). The IDL specifies

the interfaces among the CORBA objects. The IDL is used to abstract over the

fact that objects can be implemented in any suitable programming language. In

addition, the IDL is responsible to ensure that data is correctly interchanged

among the different programming languages. The ORB is responsible for

transparently directing method invocations to the appropriate target object, and a

set of services (e.g. naming, time, transactions, replication etc.)

• Microsoft® .NET Remoting [43][59] provides a framework that allows objects to

interact with one another across application domains. The framework provides a

number of services, including activation and lifetime support, as well as

communication channels responsible for transporting messages to and from

remote applications. The framework can be extended to achieve what is required.

• Jini network technology [37] is an open architecture that enables developers to

create network-centric hardware or software services that are highly adaptive to

change. The Jini architecture specifies a way for clients and services to discover

each other and to collaborate across the network. When a service joins a Jini

network, it advertises itself by publishing an object that implements the service

API. A client finds services by looking for an object that supports the API. When

the client gets the service’s published object, it will download any code it needs in

order to communicate with the service, thereby learning how to “talk” to the

particular service implementation via the API.

• Lime [45][34] is a Java-based middleware that provides a coordination layer that

can be exploited for designing applications which exhibit either logical or physical

mobility, or both. Lime is specifically targeted at the complexities of ad-hoc mobile

environments. The goal of Lime is to provide the simple Linda model of

coordination in mobile environments via tuple spaces.

Other proposals try to make the development of the functionality totally independent from

the configuration of the distribution. One of these proposals is GNATDIST[47]. This tool allows

communication and distribution of applications’ partitions developed with GNAT-Glade, which

is a compiler of the Ada95 language. In this model two similar languages exist: one for the

specification of the functionality and another one for the specification of the distribution.

The CLIP group of the Madrid University of Technology [18] proposed an extension to the

Ciao Prolog language for specifying the distribution of its modules. In this system, all modules

are specified as if they were local and the distribution is configured with a new specification in

the same language (with the extension proposed). Next, the compiler knows which modules

should be distributed and these are compiled in a particular manner. It is important to take into

25

l

account that the programmer separates the functionality from the distribution and only uses a

single language.

Work has been done in the conceptual modelling of mobile object systems using

language constructs which can clearly distinguish between the mobile and stationary parts of a

complex system. There is an extension of the TROLL language [1] in order to specify these

mobile object systems. However, the work does not incorporate the flexibility of evolving the

stationary parts into mobile parts.

2.3 Aspect-Oriented Software Deve opment (AOSD).

Object-Oriented Software Development (OOSD) [20] has aided software development by

introducing real domain concepts such as encapsulation and inheritance providing a higher

level of reusability than procedural programming. However, OOSD fails to modularize many

concerns of today’s complex systems. AOSD was first introduced in the work of Kiczales [32]

as a new programming technique. The work shows how aspect-oriented programming

contributes in many improvements such as the higher level of modularity, higher level of

reusability and maintainability and evolution through the possibility of only manipulating a

certain concern independently of the other concerns of an information system.

In [31] Kiczales presents the extension of Java for the aspect oriented programming

(AOP) called AspectJ formally defining the concepts of this technique. Kiczales defines an

aspect, the basic entity of AOP, as a well-modularized crosscutting concern. Figure 6, is an

illustration typically used to show how aspect-oriented programming uses the separation of

concerns. In (a) the concerns are tangled in the code while the crosscutting or common

concerns of the code are separated in (b) showing the elegance of the code achieved using

AOP separating the crosscutting code in an aspect. Another fundamental concept introduced

by Kiczales is the joinpoint. The joinpoints are well-defined points in the execution of the

programme which make possible the coordination between the aspect code and the non

aspect code. The coordination of the aspect and non-aspect code is called weaving.

 26

Figure 6 The tangling code in the traditional programmes is shown in (a) and the
separated code in aspect-oriented programming in (b).

An aspect in AspectJ is a module that implements crosscutting, contains pointcuts, advice

and ordinary Java declarations. A pointcut is a set of joinpoints. Advice is a method-like

mechanism used to declare that certain code should execute at each of the join points in a

pointcut. AspectJ supports three main types of an advice: before, after and around.

The aspect oriented models are either static or dynamic models. Static models are those

in which the aspects and non aspect entities are declared as separate entities, however at

compilation time the two entities are combined to one entity. This model has the drawback that

at execution time the aspects cannot be independently manipulated failing to gain a high level

of evolution, maintenance and reusability. An example to this model is AspectJ.

Many proposals are emerging following the dynamic model where the separation of the

aspects and non-aspects entities is conserved at all moments even at execution time. The

dynamic model allows the manipulation of the concrete aspects at execution time allowing a

high level of evolution, reusability and maintenance. An example is the work in [57] which

provides dynamic weaving based on the Java Virtual Machine Debugger Interface (JVMDI). In

addition, the JAsCo language [67] integrates AOSD and CBSD at the implementation level by

extending the JavaBeans and introducing connectors to perform dynamic aspect weaving.

Other proposals that use dynamic weaving (dynamic model) are the works in [56][28].

The success encountered in AOP made the aspect community raise the aspect concepts

to earlier phases of the life cycle as in the design [2] [64] , analysis and

requirements[10][25][61] of software development.

In this research work, two types of identified aspects are going to be used: the distribution

and replication aspect. Therefore in the following we present related works to the distribution

and replication aspects.

(a) (b)

27

2.3.1 Distribution Aspects

The distribution aspect in most proposals has been defined to encapsulate the properties

necessary to enable a remote communication.

The first work done on separating the distribution concerns from the functionality using

aspect oriented programming was in Lope’s dissertation[35] . The work proposed the design

and implementation of a programming language framework – D – for a representative class of

distributed systems. In D, some important distribution issues were identified and made

programmable externally to the implementation of the application’s functionality. D provided for

syntactic separation of distribution concerns, such as creation and coordination of threads, and

communication between execution spaces.

The work of Soares in [65], proposes a pattern for the distribution concern using AspectJ

named PaDA(see Figure 7). This pattern provides a remote communication between two

components (client and server) of a system. Soares proposes three aspects: a client-side

aspect to call remotely to a server component, a server-side aspect to enable the reception of

remote calls and an exception handling aspect. The client-side aspect is weaved with the

source component, the server-side aspect is weaved with the target component and the

exception handling aspect is weaved with both components. The PaDA pattern achieves a high

level of modularity that makes the system source code API-independent, a high level of

maintenance in which the communication API can be changed without affecting on the system

functionality and facilitates the testing of the functional requirements without of the distribution

because the concerns are separated.

Figure 7 PaDA’s Structure

 28

Nevertheless in [62], the[66] experience of implementing a distributed web-based

information system with AspectJ was discussed identifying drawbacks of AspectJ. The most

essential drawback was that the definition of a pointcut identifes (by using methods signatures,

class names, etc.) specific points of a given system, the aspects become specific for that

system, or for systems adopting the same naming conventions, decreasing reuse possibilities.

The works suggest that either aspect parameterization or code generation tools when

developing with Aspects should be supported.

The thesis dissertation of Herrero, works on the aspect-oriented paradigm on the

conceptual level to automatically generate code [28]. The distribution aspect in his proposal

contains the reference table and the communication platform. The reference table maintains

the references to all the invocated objects. The communication platform is responsible of the

necessary mechanisms for receiving and sending massages from a communication platform to

another.

2.3.2 Replication Aspects

The replication aspect, sometimes called fault tolerance aspect, specifies the necessity of

the system to continue working even when one or more of the components fail. This aspect

defines the properties necessary to support failures. Generally, the main mechanism to solve

failures is the replication. The replication consists basically of the capacity of a component to

duplicate.

In the proposal of Herrero[28], the replication aspect specifies either two techniques for

replicating: the Active Replication and Passive Replication. In the active replication all the

replicas are equal and act in the same form. In the passive replication a main replica exists that

is in charge to manage all the others.

2.4 Software Archi ectures t

Although software architectures have been used since decades in software development,

there is no consensus on a concrete definition for it. Recently, many researchers are still

discussing its concepts and definitions in events such as SFM 2003 [21] and SI-SE 2004 [16].

Many definitions appear in the Software Engineering Institute’s Web site [15]. A typical

definition which uses David Garlan is:

A software architecture for a system is the structure or structures of the system, which

comprise elements, their externally-visible behavior, and the relationships among them.

29

Figure 8 An illustrarion used by David Garlan to show the role of software
architectues

Software architecture is a technique used in software development of large complex

systems. Software architectures represent the description of both the system structure and

system behaviour. The structural view describes how the system is made up of interconnected

units called components. The behavioural view describes the interaction of the systems

components to achieve the overall functionality of the system. Figure 8 An illustrarion used by

David Garlan to show the role of software architectues shows that software architecture is an

intermediate phase between requirements and code in software development. It is a phase

which gives design analysis and guidelines to predict the final product.

2.4.1 Architecture Description Languages Supporting Distributed
Systems

Architecture Description Languages (ADLs) evolved from Module Interconnection

Languages (MILs) first defined in 1975 in the works of DeRemer and Kron [19]. Examples of

MILs are configuration languages as DURRA [9]which basically separate the computation from

the structure of the system. MILs had certain drawbacks in dealing with architectural issues

and in posing restrictions to software developers such as restricting that each module should

describe the other modules it interacts.

ADLs provide a way to define software architectures using a formal notation. Many ADLs

have been proposed each for a particular domain. A great study on a comparison of a set of

existing ADLs is the work of Medvidovic [42]. In this section, a discussion of some ADLs is

going to be presented with a comparison with the goals of our work in achieving distribution

communication, mobility and replication of architectural elements.

Wright [6] is a formal ADL which abstractly describes the architecture using components

and connectors. Wright provides the description of architectural configurations and styles. It

Code

Requirements

Software Architecture

 30

describes the behaviour of the components using a CSP-like notation. However, a great pitfall

of the language is that it is static and cannot describe dynamic distributes systems with mobility

and replication.

Rapide [37] allows architectural modelling, simulation, analysis and code generation

capabilities. However, this ADL does not have the necessary constructs to describe distributed,

mobility and replication of software architectures.

Despite, software architectures arose to simplify the construction of dynamic distributed

systems, few ADLs have been exploring the area of distributed systems. The first research that

provided significance results in the area of distributed systems was carried out by Kramer and

Magee at the Imperial College in London in 1995 in the ADL named Darwin [38]. Darwin uses

π-calculus to define the semantics of distributed message-passing. Darwin builds architectures

through defining composite components which consist of the binding of instantiated

components which are given locations at instantiation time. Darwin has also been used in the

CORBA environment to specify the overall architecture of component-based applications [39].

However, we cannot find new advances to Darwin in constructing software architectures with

mobile and replicable components. Moreover, Darwin only supports constrained dynamic

manipulation of the architecture, i.e. the changes must be planned.

The work in [49] introduces features that an ADL should consider in order to specify

dynamic architectures such as composition, reusability and configuration. In this work a formal

configuration language is presented describing a method for a reconfiguration model at run-

time. On the other hand, the reconfiguration model is not formal. In addition, this work neglects

a distribution model for specifying distributed message-passing among components and

connectors.

In the works of Mascolo and Ciancarini [14][40], MobiS a specification language based on

a tuple-space based model which specifies coordination by multiset rewriting is introduced.

The works show that MobiS can also be used to specify architectures containing mobile

components. However, these works do not specify the mobility concerns from the rest of the

functionalities of the software architectures.

The ADL C2Sadel has adapted a style to support distribution and mobility. The style [41]

provides software connectors that are able to move components. They exploit the modeling

and implementation infrastructure for an architectural style that supports distributed and

heterogeneous applications. However, this approach has the drawback that there is no

separation between coordination and distribution. In this way, the components are the only

architectural elements that are mobile while the connectors are static.

Recent works done in supporting distribution and mobility are the works in [36] which

describe the semantics in externalising a distribution dimension. This distribution dimension is

very similar to a connector but instead of containing the business logic, it controls the rules for

mobility and locations achieving a separation between computation, coordination and

31

distribution. Our approach is quite similar, but we use the aspect oriented approach which

encapsulates distribution issues of components in entities called aspects. We use the aspect-

oriented approach because it supports the independence of the aspects from the functionalities

thereby, achieving reusability, adaptability and evolution. In addition, it is a considerably mature

and tested approach at the implementation level.

In [24], one of the most recent works, an ADL that addresses issues of mobility is

proposed. The ADL is still not formally defined but discusses an own-defined graphical notation

with no semantics. It is only a proposal and is still not mature enough, however it is another

emphasis for the necessity for an ADL that supports the constructs and primitives to define

dynamic distributed systems.

2.5 Graphical Notation for Distributed and Mobile Systems

Modelling techniques simplify the construction of applications. The idea behind modelling

is to be able to automatically generate applications from visual diagrams that are easier to

create and understand. They also facilitate for software engineers the analysis of their designs

visually. Problems can be detected and solved visually without working with code. As

distributed systems are complex and large applications, they essentially need a graphical

notation to represent and verify that the applications meet their desired requirements.

 The Unified Modelling Language (UML) [69] is the most accepted graphical notation used

in industry. Therefore, most of the proposals that use a graphical notation for distributed and

mobile systems extend the general purpose language (UML) to represent their metamodels. In

this section we discuss some of the proposals that use different UML diagrams for the

graphical notation of their distributed models.

The works by Kaveh and Emmerich [30] exploit the limited services that middlewares offer

and discuss the problems that are encountered by using them, such as deadlocks and safety

problems. They also define and formalize UML stereotypes that support the designs of the

distributed applications. Initially, they chose the UML class to represent the system at a type

level and the interaction diagrams to model the system at an instance level. The use of

interaction diagrams limited them in obtaining full advantage of model checking techniques.

Finally, they used the class diagrams, state diagrams [27] and object diagrams. The state

diagrams are used to maintain the ability to model the dynamic behaviour and also hold all

possible interleaving of object interactions. The UML object diagrams where chosen in order to

verify different run-time configurations without any modifications to the state or class diagrams.

In the paper [11] an extension to UML class and activity diagrams to model mobile

systems is presented. Locations can be nested and mobile too. They introduce stereotypes to

model mobile objects, locations, and activities like moving or cloning. They introduce two

notational variants of activity diagrams for modelling mobility. One variant is location centered

 32

and focuses on the topology of locations. The other one focuses on the actor responsible for

an activity.

In [46], an Architecture Description Language (ADL) devoted to the design of mobile

agent systems to be implemented in a MASIF compliant platform. The ADL is defined as a

UML profile called the MASIF-DESIGN profile. It enables the designer to describe the platform

he/she uses, to locate the agents in the platform and to define the elements required from the

platform for the achievement of the distribution transparencies. The stereotypes used are the

UML subsystem, node, package and component.

2.6 Summary and Conclusions

In this chapter, an overview of the related works has been presented. After revising the

state of art, we encounter a necessity for treating distributed systems at a conceptual level

using AOSD and ADLs. Although software architectures have emerged for building distributed

systems, the actual ADLs neglect constructors for describing them. Aspect-oriented

programming has achieved great benefits to distributed systems by separating the distribution

concerns from the rest of functionalities, however there is no consensus on an aspect definition

at a conceptual level. In addition, distributed systems suffer from having an adequate graphical

representation.

This research work, proposes a conceptual model for describing software architectures of

distributed systems combining the AOSD and CBSD having an associated specification

language and graphical notation.

33

CHAPTER 3. THE DISTRIBUTION MODEL

IN PRISMA

3.1 Introduction

The PRISMA model introduced in section 1.2, does not enable the specification and

modelling of software architectures of distributed systems. Thus, the PRISMA model should be

extended to incorporate to its framework the appropriate characteristics and properties that are

essential for distributed systems. As a result not only the framework has to be extended, but

also the PRISMA model and its Architecture Description Language (ADL).

This incorporation should be done by preserving the concepts and objectives of the

PRISMA architectural model combining the aspect-oriented and component-based software

development. Thus, the construction of the software architectures of distributed systems

should be constructed by defining PRISMA’s interfaces, aspects, architectural elements and

meta-level. In addition, PRISMA’s objectives of achieving reusability, maintainability, evolution

and dynamic reconfiguration should also be reached for the distributed software architectures

definition.

In this chapter, the primitives to define distributed software architectures in PRISMA are

presented. These primitives are incorporated to the PRISMA meta-model in order to specify

architectural elements of distributed and mobile systems whose replication is allowed. In

addition, these primitives have been incorporated to the PRISMA ADL at both the type

definition and configuration level. Also, the proposal of a PRISMA infrastructure is introduced in

order to provide distribution services to the model. Finally, an analysis is shown to demonstrate

how the different decisions where taken to reach to the actual distributed model and what

attributes where considered in order to achieve to an optimized model.

 34

3.2 Incorporation of a Distribution Model to PRISMA

The incorporation of distribution to the PRISMA architectural model has been done

following the combination of the aspect-oriented approach and the component based approach

presented in [53] . A distribution aspect is defined in order to encapsulate the distribution

properties, which is weaved with other aspects to form distributed architectural elements. In

addition, as component based distributed systems may malfunction for a variety of reasons,

including network failures and software errors a replication aspect is included to the set of

aspects to encapsulate the replication properties which are also weaved with the other aspects

to form a fault tolerance architectural element. At the same time, distribution-aware information

is added also at an architectural level. At the architectural level the distribution model provides

a location hierarchy where the connection relations: attachments among components and

connectors and binding links among architectural elements and systems form a distributed

Domain Name Server (DNS) of the architecture. As a result both the aspect-oriented view and

the architectural view of the distribution dimension are complementary for our distribution

model in PRISMA.

3.2.1 AOSD view of the Distribution Model of PRISMA

An aspect is a crosscutting concern i.e. a concern that is present in many components of

the information system. Distribution is a clear crosscutting concern in a distributed system.

Each distributed component has its properties that enable it to be distributed. Replication

properties also crosscut different architectural elements of a software architecture. For this

reason, another important aspect for large and complex distributed systems is replication which

for instance can be used for solving fault tolerance problems. Therefore, in PRISMA a

distribution and a replication aspect are defined in order to support the distribution and

replication properties of an architectural element.

DISTRIBUTION

REPLICATION FUNCTIONAL
COORDINATION QUALITY

CONTEXT-
AWARENESS

M
ET

A
 L
EV

EL
B A

SE
 L
E V

EL

DISTRIBUTION

REPLICATION FUNCTIONAL
COORDINATION QUALITY

M
ET

A
 L
EV

EL
B A

SE
 L
E V

EL

DISTRIBUTION

REPLICATION FUNCTIONAL
COORDINATION QUALITY

CONTEXT-
AWARENESS

M
ET

A
 L
EV

EL
B A

SE
 L
E V

EL

Figure 9 A PRISMA architectural element with a distribution and replication aspect.

35

3.2.1.1 The Distribution Aspect
A PRISMA distribution aspect should be added to the set of aspects types of the model in

order to enable the definition of software architectures of distributed systems (see Figure 9).

The distribution aspect specifies the features and strategies that manage the dynamic location

of the instances of the architectural elements of a software architecture. Therefore, if the

system is local a distribution aspect is not added to the set of aspects of the architectural

element.

The distribution aspect deals with all the properties related to distribution and changes in

location. To define the distribution aspect the general concepts of aspects fully explained in the

work of Perez [53] are used. The distribution characteristics are defined through the aspects

attributes and services. The change of state of the architectural element is specified through

the valuations of the aspects. The restrictions associated to these changes are defined using

constraints and preconditions. The consequences following certain conditions are specified by

triggers.

The distribution aspect has to be added to the set of aspects of the meta-model. This is

done by defining a distribution meta-class which inherits from the meta-class Aspect of the

meta-model. The distribution aspect includes both the general concepts of the meta-class

aspect (see Figure 10).

Figure 10 The Distribution and Replication aspect added to the Aspect Package of
the PRISMA meta-model

 36

Each architectural element with a distribution aspect must have a location. The location is

a predefined PRISMA attribute of the distribution aspect that has as an abstract data type

(domain) called loc. This data type models the sites in which architectural elements of an

architecture domain are located. Therefore, the values of a location attribute should be one of

the values of the loc data type designed in the architecture domain. In this way, PRISMA can

remain independent of any notation of locations (nodes) and can be used for designing

different kinds of location mechanisms. For example, in the geographical space, each location

represents the coordinates of the earth using a GPS (Geographical Positioning System) where

as in logical space the locations are IP addresses of a LAN network.

The distribution aspect can specify the ability of an architectural element to be mobile or

the ability of an architectural element to affect on the locality of an external architectural

element through the PRISMA service move. Therefore, if a distribution aspect does not have

the PRISMA service move it means that it is not mobile nor it can affect on the locality of other

architectural elements of the architecture. The PRISMA service move can be in, out or both. If

the move is an in, the instance of the architectural element type is mobile. If the move is an out
then the architectural element instance which it is formed by the aspect can move an external

architectural element of the software architecture. In addition, the arguments of the service

move can be input or output. When the argument is an input the argument is returning a

result to the distribution aspect and when the argument is an output the argument is passing a

parameter.

In Figure 11, the package of the distribution aspect is shown. The distribution aspect is

directly related with the meta-class Attribute, the meta-class Service and the meta-class

Component and Connector. A distribution aspect must have one to many Attributes (1..n-o..n).

This is due to the fact that a distribution aspect must have at least an attribute named location

with loc as a data type. This is specified as a constraint. Moreover, the distribution aspect must

have two Services (o..n- 2..n). This is because the initializing begin service and the finalization

end service must exist. In addition, a proper distribution service move can optionally exist

depending on the requirements. In order to specify that the services begin, end and move are

services of the distribution aspect a constrain is defined. The distribution aspect can optionally

be part of a component or connector depending if we are working on a distributed system or

not therefore the cardinality of the aggregation between the meta-class distribution and the

meta-class component and the meta-class connector is (o..n-o..1). In addition, a component

and connector can only have a distribution aspect.

37

at.ocllsKindOf(Distribution
Aspect) implies
at.attributes --> forAll(o|
at.content.attributes -->
exists (a |
a.attribute.name= location))

A distribution aspect
must have two services
which are begin and end.
A distribution aspect can
have a service named
move

Distribution
Attribute

Service

Componentconnector

Distribution
(from Aspect)

0..n1..n 0..n1..n 0..n 2..n0..n 2..n

0..n

0..1

0..n

0..1

0..n

0..1

0..n

0..1

Figure 11 Distribution Aspect package of the PRISMA meta-model

The distribution aspect can also be formed by patterns that also use some predefined

services, however this is fully explained in Chapter 4.

3.2.1.2 The Replication Aspect
Many models consider replication as the sequence of a copy and move operation without

considering it as a primitive. However, in our proposal we consider to take replication as a

primitive and separate the replication properties from those of distribution. In this way, we

achieve a higher level of modularization and maintenance such that we can change the

replication properties without affecting on those of distribution and the distribution requirements

can be tested without those of replication. For this reason, the replication can be independent

of the distribution and mobility. Thus, architectural elements can be replicated independently of

being in a distributed system or not.

The replication aspect is also included in the PRISMA meta-model by inheriting from the

meta-class aspect (see Figure 10). The replication aspect as the distribution aspect uses the

general concepts of an aspect to specify all the properties related to the replication of an

architectural element. The replication characteristics are defined through the aspects attributes

and services. The change of state of the replication aspect is specified through the valuations.

 38

The restrictions associated to these changes are defined using constraints and preconditions.

The consequences fulfilling certain conditions are produced by triggers. As the distribution

aspect, the replication aspect also includes the protocols as part of its definition in order to

organize the necessary services to define the process which replicates an instance of an

architectural element.

The replication aspect must have the PRISMA service replicate. The replicate service has

a replica’s location as an argument therefore its domain should be of type loc. If the service

replicate is an in then the aspect specifies that its architectural element can be replicated. If the

service replicate is an out then the aspect specifies that the architectural element of the aspect

can cause the replication of an external architectural element of the architecture.

In Figure 12, the package of the replication aspect is shown. The replication aspect is

related with three meta-classes: Service, Component and Connector. The aggregation

between the meta-class Service and Replication has the cardinality (o..n-3..n). This is to

indicate that a replication aspect must have at least three services: the begin service, the end

service and the replicate service. To constraint the existence of these three services a

constraint is defined. The aggregation relation between the meta-class Replication and the

meta-classes Component and Connector has the cardinality (0..n-0..1). This is due to the fact

that the replication aspect is an optional aspect for the architectural elements. Only a

replication aspect can exist for each component or connector.

The replication aspect
must have 3 services:
the begin, end and
replicate services.

Component

Service
(from Services)

Connector

Replication0..n 0..10..n 0..1
0..n 3..n0..n 3..n

0..n

0..1

0..n

0..1

Figure 12 Replication Aspect package of the PRISMA meta-model

The replication aspect as the distribution aspect can be formed of patterns which also

need some additional predefined services. This is explained in detail in Chapter 4.

39

3.2.2 The architectural View of Distribution

An architectural model in PRISMA is built by attaching the instances of architectural

elements through the attachments which can be simple architectural elements (components

and connectors) or complex architectural elements (systems). Also, the system’s bindings

connect the system with the elements (components or connectors) it encapsulates.

As the attachments and binding links define the connections among the instances of the

architectural elements via the interfaces (ports and roles), they can also define the connections

between the locations of the connected instances. As a consequence, the attachments and

binding links can be seen as the software artefacts in which instances of architectural elements

are registered once instantiated and given a location value in order to publish their ports or

roles, that is, in order to offer and provide their services remotely to other instances of the

architectural model. Therefore, the attachments and binding links have to be location aware of

the architectural elements they connect.

 In Figure 13, an example of a distributed architectural model is shown. There are 4 nodes

(locations): component_1 and system_1 are deployed on Node 1, connector_1 and

component_2 are deployed on Node 2, connector_Arch and component_3 are deployed on

Node 3 and connector_2, component_4 and system_2 are deployed on Node 4. The

connections between connectors’ roles and components or systems ports are the attachments.

While the connections between a system ports and the ports of components are the binding

links.

<<component>>
System_1

<<component>>
Component_2

<<componentconnector>>
Connector_1

<<componentdeploy>>
Component_1

<<component>>
System_2

<<component>>
Component_4

<<componentconnector>>
Connector_2

<<component>>
Component_3

<<componentconnector>>
Connector_Arch

Node_1

<<deploy>>

Node_2 Node_3

<<deploy>>

Node_4

<<deploy>>

<<deploy>>
<<deploy>>

<<deploy>>

<<deploy>>

<<deploy>>

<<deploy>>

<<component>>
System_1

<<component>>
Component_2

<<componentconnector>>
Connector_1

<<componentdeploy>>
Component_1

<<component>>
System_2

<<component>>
Component_4

<<componentconnector>>
Connector_2

<<component>>
Component_3

<<componentconnector>>
Connector_Arch

Node_1

<<deploy>>

Node_2 Node_3

<<deploy>>

Node_4

<<deploy>>

<<deploy>>
<<deploy>>

<<deploy>>

<<

<<component>>
System_1

<<component>>
Component_2

<<componentconnector>>
Connector_1

<<componentdeploy>>
Component_1

<<component>>
System_2

<<component>>
Component_4

<<componentconnector>>
Connector_2

<<component>>
Component_3

<<componentconnector>>
Connector_Arch

Node_1

<<deploy>>

Node_2 Node_3

<<deploy>>

Node_4

<<deploy>>

<<deploy>>
<<deploy>>

<<deploy>>

<<deploy>>

<<deploy>>

<<deploy>>

Figure 13 A distributed architectural model in PRISMA connected with attachments
and binding links

 40

As a result of the incorporation of the distribution model into PRISMA , the PRISMA

metamodel has been extended. This extension can be seen in Figure 14 and 12, the location

attribute of the distribution package has been included in the attachments package (see Figure

11). So in the meta-model the location of the two connected architectural elements is added to

the attachments. Moreover, the locations of the system and the element it encapsulates are

also appended to the meta-model in the bindings package (see Figure 15).

Port
(from Port)

Component
LinkPort

1..*1..*

Attach

1..n1..n

Role
(from Role)

Connector
LinkRol

1..n1..n 2..*2..*

The attachment has the
Component location

The attachmnet has
the Connector
location.

Figure 14 The attachments package of the PRISMA meta-model

Port
(from Port) System

0..*
1

0..*
1

Binding

has
Element

The Binding is
aware of the
System
location.

The Binding is
aware of the
Element
location

Figure 15 The bindings package the PRISMA meta-model

The attachments and the systems bindings form a distributed Domain Name Service

(DNS) when performing distributed communication in the PRISMA model. This optimizes the

performance and scalability of distributed systems specified in PRISMA due to the fact that

problems resulted from having a centralized DNS are reduced by balancing the load between

the distributed DNSs. At the same time, this provides a description mechanism to establish

location hierarchies which is crucial for mobile and ubiquitous systems.

The location hierarchies in PRISMA are easily described due to the fact that architectural

models are hierarchical. Such that bindings represent hierarchical connections (connect an

architectural element from a lower level of aggregation with the system which is a composite

component) and attachments are the non-hierarchical connections. As a consequence, the

41

locations of PRISMA software architectures can be represented in a tree-like structure. The

root of the tree is the architectural model and its leafs represent the locations of the direct

elements (systems, components or connectors) it contains. If the element is a system then its

direct leafs are the locations of the architectural elements that it encapsulates (see Figure 16).

loc(Component_1)=Node_1

Architectural Model

loc(System_1)=Node_1
loc(Connector_Arch)=Node_3 loc(System_2)=Node_4

loc(Connector_1)=Node_2

loc(Component_2)=Node_2

loc(Component_4)=Node_4

loc(Connector_2)=Node_4

loc(Component_3)=Node_3

loc(Component_1)=Node_1

Architectural Model

loc(System_1)=Node_1
loc(Connector_Arch)=Node_3 loc(System_2)=Node_4

loc(Connector_1)=Node_2

loc(Component_2)=Node_2

loc(Component_4)=Node_4

loc(Connector_2)=Node_4

loc(Component_3)=Node_3

Architectural Model

loc(System_1)=Node_1
loc(Connector_Arch)=Node_3 loc(System_2)=Node_4

loc(Connector_1)=Node_2

loc(Component_2)=Node_2

loc(Component_4)=Node_4

loc(Connector_2)=Node_4

loc(Component_3)=Node_3

Figure 16 Representing the locations of the architectural model example of Figure
13 hierarchically.

3.3 The Architecture Description Language

The architecture description language (ADL) in PRISMA is based on OASIS 3.0 [33].

OASIS is a formal language for defining conceptual models of object-oriented information

systems which permits the validation and automatic generation of applications. The general

template of a PRISMA aspect is practically identical to a class in OASIS with some slight

differences. On the other hand further extensions of the language were necessary for aspect

weaving, architectural elements, attachments, binding links and others. They are presented in

detail in [53].

The separation of the PRISMA ADL to define architectural elements at a type level using

type definition language and at an instance level using the configuration language has many

advantages. The type definition language is able to define architectural elements at a type level

combining the AOSD and CBSD, storing the first order citizens in a types library in order to

enable their reusability. Nevertheless, the configuration language imports the types and

instantiates them defining the topology of the software architecture through the attachments

and binding links.

In the following we are going to explain in detail the distribution and replication aspect

templates with their proper properties using the type definition language. Next, the distribution

 42

part of the instances and attachments of the architectural view is showed using the

configuration language.

3.3.1 The Type Definition Language

The type definition language specifies the interfaces, aspects and architectural elements

at a type level.

3.3.1.1 Interfaces
The interfaces are necessary in order to publish services of the different architectural

elements. All the services a specific interface publishes have to belong to the same aspect

type i.e. the services of a specific interface have to belong to either a distribution aspect or to a

replication aspect but not both. The syntax of the type definition language for specifying an

interface is the following:

Interface name

Services

 service1;

 ...

 servicen;

End_Interface name;

For instance, a specification for publishing the service move of a distribution aspect is the

following:

Interface IMblty

Services

 move (input New_location:loc);

End_Interface IMblty;

An interface for the replication service is the following:

Interface IReplicate

Services

replicate (input New_location:loc);

End_Interface IReplicate;

3.3.1.2 Aspects

In this section the template of a PRISMA aspect is presented. This template is the

following:

43

aspect_type Aspect name using interface1, ... interfacen;

Attributes

[<attribute_name> (<attribute_type>)]+

Services

begin <service_name> (<arg_service>)

[as <service_name> (<arg_service)];

end <service_name> (<arg_service>)

[as <service_name> (<arg_service)];

in/out <service_name> (<arg_service>)

[as in/out <service_name> (<arg_service)];

End_Services

Valuations

 <observability_attribute_formulas>

End_valuations

Constraints

static <static_restrictions>

End_Constraints

Preconditions

<formula_precondition_event>

.......

End_Preconditions

triggers

<trigger_event_formula>

End_triggers

Operations [transactions]

<transaction_formula>

......

End_Operations

Protocols

 44

<protocol_formula>

End_Protocols

 End_ aspect_type Aspect name;

In the heading of the aspect, the type of properties an aspect defines is specified:

distribution or replication. Moreover, the interfaces which the aspect gives them semantics are

indicated. For instance, it is optional for the distribution aspect to use any interfaces depending

whether the distribution aspect needs to publish some of its services or not. For example if the

distribution aspect does not specify a mobility behaviour that has to do with the environment

then the distribution aspect does not have to use any interfaces as the following:

Distribution Aspect Distributed;

On the other hand, when a distribution aspect allows the environment to affect on its

behaviour it uses the interfaces. For example, when a distribution aspect specifies that the

environment can control its mobility, that is to say that the environment can decide to move an

architectural element, the distribution aspect should use an interface as follows:

Distribution Aspect Mobile using IMblty;

 The case is similar in the replication aspect. If the replication of the architectural element

is not affected by the environment and the replication of architectural elements of the

environment are not influenced by the architectural element that specifies the aspect then

interfaces are not used in the heading. Whereas the interface should be used in the heading if

the contrary is the case. For example, the following is the heading of a replication aspect that

its replication is only affected by the state of the architectural element.

Replication Aspect replicable;

The distribution and replication aspects attributes section can use predefined attributes as

well as other attributes necessary to specify the properties of the aspect. In the case of the

replication aspect there are no obligatory attributes that should be part of the attributes section,

whereas it can use some predefined and other attributes depending on the information

systems specification requirements. In the case, of the distribution aspect the predefined

attribute location must be part of its attributes section. This attribute has the data type loc and

uses the reserved words NOT NULL to indicate that a value has to be given to the attribute

location at the time of instantiating the architectural element of the distribution aspect. In the

following, an example of the attributes section of a distribution aspect with the predefined and

45

obligatory location attribute, some other optional predefined attributes and attributes that the

analyst adds to the specification depending on the requirements of the system is shown:

Attributes

 location : loc NOT NULL;

 requestRate : nat(0);

 arrivalRate : nat(0);

 newLocation : loc;

The services section as the rest of aspects of PRISMA, contain the published services of

the interfaces which the aspect uses and the non published ones that are proper and internal

to the aspect. The distribution and replication aspects have four types of services: the

initialization, finalization, modification and query services. The begin and end are reserved

words for the initialization and finalization services respectively. The begin service of an aspect

refers to the initialization of the aspect when an architectural element type is instantiated. The

begin service gives the values to the necessary attributes at instantiation like the NOT NULL

attributes. For example, the attribute location of the distribution aspect is given a value through

the begin service because it is NOT NULL. The end service finishes the execution of the

aspect.

The semantic definition of the aspects set of services is differentiated between the client

and server behaviour. For instance, the move (newLocation: loc) of the distribution aspect can

perform different actions depending on a client or a server behaviour. When a component is

using the service as a client, the execution of the service will produce a service invocation of

another component in which the argument newLocation is going to produce a change in the

attribute location on the other component. While, whenever the service is executed in the

component due to a server behaviour, the argument newLocation will change the location of

the component. As a result, these behaviours are differentiated syntactically by preceding the

service with the reserved words in and out to distinguish between the client or server

behaviour of the service, respectively. For this reason, in order to indicate that a component

can affect on the location of the environment the service out move(newLocation: loc) is used.

While, when the component indicates that it can be moved either due to an external petition or

due to a change of its state the in move(newLocation: loc) service is used. The same case is

applied in the replication aspect with the replicate(newLocation: loc) service. When the aspect

indicates that it can be replicated the service is syntactically represented by in

replicate(newLocation:loc) and when the component of a replication aspect can cause a

replication of another architectural element of the architecture the service out
replicate(newLocation:loc) is used. When, neither an in nor an out proceed a service it is

considered to be by default an in.

 46

An argument of a service can be of type input or output. If the argument is an input then

the aspect is receiving a value from the environment. However, when the argument is an

output the aspect is passing (sending) the value of a parameter to another architectural

element. When an input/output argument is not specified, the argument is considered to be

an input if the service is an in. While when the service is an out and the argument is not

specified, the argument is considered to be an input by default. The service section of a

distribution aspect can look as follows:

Services

 in move(NewLocation : loc);

 out move(NewLocation : loc);

 calculateArrivalRate(input ArrivalRate : nat)

The valuations specify how the execution of a service changes the values of the

attributes and consequently changes the state of the aspect and the architectural element. As

a result the valuations related with services with out arguments are optional to be specified

depending on the requirements, while it is obligatory to specify the valuations of the services

with in arguments. The valuations are formulas of dynamic logic [26] of type ϕ [a]φ and are

interpreted as: “if in a determined state of the aspect, ϕ is satisfied and the action a happens, in

the posterior immediate state φ is satisfied”.

 In the following, the valuations of the move(in NewLocation: loc) of the distribution

aspect is specified in order to change the value of the location attribute to the newLocation

when the service executed.

 Valuations

 [move(input NewLocation : loc)] location = NewLocation;

 End_Valuations

Constraints are formulas based on the state of the aspect and that must be satisfied

each time a service is executed in the whole life of the instances of the architectural element

types that incorporate the aspect. In the case a constraint is not satisfied, the next state of the

aspect is the last one in which the constraints where satisfied. Constraints can be classified

into static and dynamic, depending if they refer to only one state or relate to different status. To

specify dynamic constraints temporal operators are used such as always, sometimes, since

etc. Constraints are used for example in the distribution aspect to specify the restrictions of the

locations a component can move. In the following distribution aspect the location of the

component is constrained to always be inside this interval:

47

Constraints

 always { location>0 & location< x};

Preconditions establish the conditions that have to be satisfied so that a service can be

executed. So it is not enough that a service is invoked in a server but also that certain

conditions have to be satisfied. In dynamic logic, the preconditions have the formula ¬φ[a]

false, where φ is a well-formed formula (wff) which is interpreted as a condition of the

occurrence of the indicated action. Its semantic is “if it is not achieved, the occurrence of the

action does not change to the next state of the instance”. For example, an architectural

element instance should not perform a replication if the number of services executed do not

exceed a certain threshold. This is indicated by the following precondition:

Preconditions

 replicate(AnotherLocation)(if { serviceCount >= x});

A trigger permits a service defined in the aspect of an architectural element to be

obligatory executed whenever the aspect that defines the trigger reaches to a state that

satisfies the condition of the trigger. The triggers can cause an obligatory execution of a

service of an external architectural element when the arguments of the service have an out

argument. When the architectural element of the aspect in which the obligation is established is

the client of such service, the execution of the action occurs as an internal service request.

In the context of dynamic logic, the trigger has the form φ[¬a] false, where φ is a well-

formed formula (wff) interpreted as an occurrence condition of the indicated action. The

significance is “if φ is satisfied and the indicated action is not executed, then the instance type

does not reach a valid state”. Therefore, it is essential that the action occurs for the instance to

reach the next state. An example of a trigger in the distribution aspect is when the request rate

of the architectural element exceeds a certain threshold the element obligatory has to move a

new location. The trigger is as follows:

 triggers

 move(NewLocation) when {requestRate>=requestRateLimit};

An operation is a non elemental and non atomic service. An operation is a process

where the sequence of established actions should occur. An atomic operation is called a

transaction which has to be specified with the reserved word transaction. An example of a

transaction in the replication aspect is when the set of services have to be accomplished in

 48

order to replicate an architectural element to the location of a client which most frequently

invokes a service. Thus the location of the client should be found then the replication is

performed. The transaction is as the following:

operations

replication(Service, CL, ClientL)transaction:

replication ≡

out findClientLocationMostInvoked(Service).REPLICATE1;

REPLICATE1 ≡

in responsefindClientLocationMostInvoked(CL).REPLICATE2;

REPLICATE2 ≡ replicate(ClientL);

A protocol defines a sequence of actions which’s occurrence is allowed (can occur). For

instance, a protocols section of a distribution aspect first has to be initialized at the instantiation

of the architectural element then the architectural element can be move or it can be destroyed.

This protocol is specified as follows:

Protocols

 DISTRIB0 ≡ begin.EXTMBILE;

 EXTMBILE ≡ move + end;

3.3.1.3 Architectural elements
Previously, we have introduced the full template of the distribution and replication aspect.

In the following, how the aspects can be weaved to form an architectural element is going to be

explained. As noticed, in the specifications of the aspects no dependencies between the

aspects and the architectural elements where considered. This provides the reusability of an

aspect in different architectural elements. So after defining an aspect and storing it in the type’s

repository, the architectural elements can reuse these stored aspects if they are compatible

with its behaviour requirements. Then, the weaving which is defined in the architectural

element’s specification indicates the synchronizations and dependencies among the aspects

adapting these synchronizations to the behaviour of the architectural element.

Next, the specification of a bank system account component is defined showing the full

specification of the replication and distribution aspect. The distribution aspect specifies a

distributed and mobile behaviour. The aspect also offers the ability to check if the any locations

are compatible with the location borders of the aspect by using the service checkLocation(

input Location:loc, output:bool). Before any move, the new location is checked to be in the

location interval and if it is the element is moved. This is specified in the valuation of the

move(Newlocation:loc). The constraint always checks that the location of the element is

49

inside the interval of locations. The protocols assign the order of the execution of the services.

At the beginning of the instantiation of the architectural element the values of the location,

maximum location value and minimum location values are assigned. Then a sequence of

location checking occurs, or a sequence of moves of the element occurs or the distribution

aspect ends in the case the instance of the architectural element is destroyed.

 Distribution Aspect MobileAccount using IMobility

 Attributes

 location: loc NOT NULL;

 locMax: loc NOT NULL;

 locMin: loc NOT NULL;

 Services

begin(Location:loc, LocMAx:loc, LocMin:loc)

 Valutions

 [begin(Location,LocMax, LocMin)]

 {location:=Location & locMax:=LocMax &
locMin:=LocMin;}

checkLocation(input Location:loc, output
checkC:bool)

 Valutions

[checkLocation(input Location:loc,output
checkC: bool)]

{Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

{Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

move(Newlocation:loc)

 Valuations

 {NewLocation>locMin & NewLocation<locMax}
 [move(input NewLocation)] location =
 NewLocation;

 Constraints

 always{ location >locMin & location< locMax};

 50

 Protocols

 mobility :

 mobility ≡ begin.MOBILITY2;

 MOBILITY2≡ end+checkLocation + move.MOBILITY2;

 End_Distribution Aspect MobileAccount;

The replication aspect specifies the behaviour of replicating. In the following replication

aspect the service replicate(NewLocation) is executed by an architectural element

which is not the one of the replication aspect. This is indicated by using the interface IReplicate

in the heading of the aspect. The replicate(NewLocation) does not have a valuation

associated to it because it is a service of the meta-level which does not change the state of the

architectural element when executed.

Replication Aspect ReplicateAccount using IReplicate

 Services

 in replicate(NewLocation:loc);

 Protocols

 replication:

 replication ≡ begin.REPLICATION1;

 REPLICATION1 ≡ end + replicate.REPLICATION1;

 End_Replication Aspect ReplicateAccount;

The template of an architectural element is divided into four fundamental parts: the

heading, the ports or roles, the aspects and the weavings. The heading starts with either the

reserved word Component_type or Connector_type depending if the architectural element is a

component or a connector respectively. The ports or the roles are specified by giving for each

port or role an interface type. Then the aspects which form the architectural element are

imported. Finally, the weaving which synchronizes the aspects are specified indicating if a

synchronization is an after, before or around.

Component_type/Connector_type name

 Port/Roles

Pi : interfacei;

… …

 End_Port/End_Roles;

51

[Aspect_type Aspect Import name]

 Weaving

 <formula_weaving>;

 End_Weaving;

End_Component_type/Connector_type name;

The account component is defined by defining the ports of the component and giving

each one of them a type of interface, by importing the replication and distribution aspect

previously specified and a functional aspect and the weavings of the aspects. The first weaving

of the account component specifies that a component moves when a customer changes its

home address. The second weaving specifies that the destination location is checked using

the distribution aspect before a replication occurs. So the replication execution depends if the

destination location is valid or not.

Component_type Account
 Port

 replicationPort: IReplicatei;

 distributionPort: IMblty;

 functionalPort: IAccount ;

 End_Port;

 Import Functional Aspect FAccount;
 Import Distribution Aspect MobileAccount;
 Import Replication Aspect ReplicateAccount;

 Weaving
 move(NewLocation) after changeAddress(Address);
 checkLocation(Location,Checkc)

 beforeif(Checkc=true)
 replicate(Newlocation);
 End_Weaving

 End_Component_type Account;

 52

3.3.2 The Configuration Language

Distributed systems using the PRISMA ADL to describe their software architectures,

obtain many advantages due to the separation of its language into the description of the Type

Level and Configuration Level. The type definition enables us to describe some distributed and

replication behaviours independently of the contexts they will be applied gaining a high

reusability of these behaviours in different contexts.

On the other hand, distributed systems highly depend on the configuration of the

architectures and on the execution of the distributed instances due to their dynamic

environments. The dynamic change of the configuration of the architecture at run time, reacting

to the changes in the environment, is called reconfiguration. Distributed systems need to

reconfigure due to failures such as failures in the networks, software errors and node failures.

The configuration language defines the architectural model by attaching instances of

architectural elements. It permits to specify an initial state of the software architecture and then

execute services of the meta-level dynamically to enable reconfiguration.

At the configuration level, the architectural element instances of the software architecture

are assigned a physical location and registered in the architectural model to offer their services

remotely. The architectural model is aware of the locations of its connected instances through

the attachments.

The template of the definition of an architectural model is as follows:

 Architectural Model <name of model>

 Import Types

 Components

 <name of type>, … … ;

 Connectors

 <name of type>, … … ;

 Systems

 <name of type>, … … ;

 End_Import Types;

 Instances

 <name_instance>: <name_type>;

 ……

 End_Instances;

 Attachments

 Associated_connector <connectorName>;

 <formula_connection>;

 ……

 End_associated_connector <connectorName>;

53

 End_Attachments;

End Architectural Model <model name>

In Figure 17, an architectural model of a distributed account and ATM of a bank system is

represented. Account1 and ATM1 are instances connected through the instance Connector1.

Account1 and Connector1 are residing on Node1 while ATM1 resides on a different node

Node2. In the following this example is going to be specified using the Configuration Language.

Node_1

<<component>>
Account1 port_1

<<connector>>
Connector1role_1

role_2
Node_2

<<component>>
ATM1port_3

Node_1

<<component>>
Account1 port_1

<<connector>>
Connector1role_1

role_2
Node_2

<<component>>
ATM1port_3

Figure 17 A distributed architectural model of a simple bank system of an account
and ATM

The specification of an architectural model is marked with a heading and an ending. The

heading gives a name to the architectural model. For instance, marking the architectural model

with the name distriuted_bank is as follows:

Architectural Model <distributed_bank>

End_Architectural Model <distributed_bank>;

The architectural elements types that participate in the architectural model are imported

from the PRISMA library. These types where previously defined with the type definition

language and stored for their usability. For instance, the Account component type is the one

 54

defined in section 3.3.1 with the distribution and replication aspects. The importation of the

architectural model’s types in Figure 17 which are Account, Connector and ATM is as the

following:

Import Types

Components

 Account, ATM;

Connectors

 Connector;

End_Import Types;

Once the necessary types are imported, the types are instantiated. The instantiation

section is delimited with the reserved word Instances. At instantiation the necessary values

have to be given to the aspect’s attributes which are NOT NULL values through the begin

service. The following shows the Instances section for instantiating the Account, Connector

and ATM to Account1, connector1 and ATM1. The instances give values to the attributes

location, locMax and locMin previously defined in the distribution aspect. Therefore,

determining on Figure 17 the instance Account1 and Connector1 are located in Node1 and

ATM1 is in Node2. Then, the three instances have the LocMin equal to Node1 and LocMax to

Node2 indicating that the valid locations should be either Node1 or Node2.

The creation of the instances is made through the service NewInstanceOf, where the

name of the instance, the type of the instance and the set of required attributes for creating the

instance is passed. The required attributes are those who have the NOT NULL property in their

aspect type definition. The syntax of the service is the following:

NewInstanceOf(Name: String, Type: PRISMA_Architectural_Element,

 ListOfRequiredAttributes: List);

The list of required attributes vary depending on the type that the instance belongs to,

since each type imports a set of different aspects and each aspect has a quantity and a type of

different required attributes.

Instances

NewInstanceOf (Account1: String, Account: Component, Location:

Node1, LocMin: Node1, LocMAx: Node2);

NewInstanceOf (Connector1: String, Connector: Connector

Location: Node1, LocMin: Node1, LocMAx: Node2);

55

NewInstanceOf (ATM1: String, ATM: Component, Location: Node1,

LocMin: Node1, LocMAx: Node2);

End_Instances;

After defining the instances of the architectural model, the connections between them are

established building the topology of the architecture. These connections are indicated by the

reserved word attachments. The attachment formula specifies which port of a component

instance is attached with which role of a connector instance and the location of the component

and connector instance.

Attachments

 Associated_connector Connector1;

 Account1.(port1, Node1) Connector1.(role1, Node1);

 ATM1.(port2, Node2) Connector1.(role2, Node1);

 End_associated_connector CnctSubasta;

End_Attachments;

The specification of a system is quite similar with the sections of an architectural model,

with the addition of a bindings link section. Instead of having a heading and ending indicated

with the reserved word Architectural Model, the reserved word is replaced with the reserved

word System_type. Moreover, the system has an additional section for the binding links which

is marked with the reserved word Bindings.

<<System>>
Bank_System

Node_1

<< component >>
Account1 port_1

<< component connector >>
Connector1role_1

<< >>

role_2

Node_2

<< component >>
ATM1

port_3

port

<<System>>
Bank_System

Node_1

<< component >>
Account1 port_1

<< component connector >>
Connector1role_1

<< >>

role_2

Node_2

<< component >>
ATM1

port_3

port

 56

Figure 18 A system architectural element of a distributed bank system

In Figure 18, the same bank system example represented in an architectural model in

Figure 17, is represented as a system architectural element that has its own port. The

connection between role_2 of Connector1 and port of the Bank_System is a binding link. The

binding links also have to be location aware of the connected architectural element instances.

The following specifies the system bank system:

 System_type Bank_System

 Import Types

 Components

 Account, ATM;

 Connectors

 Connector_Arch;

 End_Import Types;

 Instances

 Account1 (Location: Node1, LocMin: Node1, LocMAx: Node2):

 Account;

 Connector1 (Location: Node1, LocMin: Node1, LocMAx: Node2):

 Connector;

 ATM1 (Location: Node1, LocMin: Node1, LocMAx: Node2): ATM;

End_Instances;

Attachments

 Associated_connector Connector1;

 Account1.(port1, Node1) <<>> Connector1.(role1, Node1);

 ATM1.(port2, Node2) <<>> Connector1.(role2, Node1);

 End_associated_connector CnctSubasta;

End_Attachments;

Bindings

Connector1.(role2,Node1) --- port;

End_Bindings;

 End_System_type Bank_System;

57

3.4 Mobility, Replication and Reconfiguration

The reconfiguration of a software architecture is the change in the structure of the

architecture configuration. Mobility and Replication cause the reconfiguration of the software

architecture.

The semantics of a move(loc) service in PRISMA is the following:

- Creates an instance of the architectural element in the new location conserving its

state.

- Modifies all the attachments connected to the architectural element instance, updating

them to the new location. For example, lets consider the following attachment

between c1 and con: c1(port1,node1) con(role1, node2). If c1 moves to node3,

then the attachment becomes: c1(port1,node3) con(role1,node2). If the

architectural element is a system then its binding also have to be updated.

- The instance in the previous location is deleted.

The semantics of a replicate(loc) service in PRISMA is the following:

- Creates an instance of the architectural element (a replica) in the new location

conserving its state.

- Creates exactly the same attachments and bindings (in case of a system) with the

architectural element instances connected with the original replica.

3.5 PRISMA’s Infrastructure for Distribution

PRISMA provides guidelines for building large, complex and distributed systems. For

these guidelines to be useful they must to be accompanied by support for their implementation.

Thus an infrastructure must be implemented in order to support the different functionalities of

PRISMA in the different technologies. Some functionalities can be either directly used through

the offered services of the platforms or by implementing additional PRISMA functionality using

their platforms.

The PRISMA meta-level contains the services that provide the creation of the base level,

evolution and dynamic reconfiguration of the software architecture at execution time. These

meta-level services and other PRISMA services that can be used at execution time are being

implemented in the PRISMA infrastructure. This provides the PRISMA functionalities in

different programming languages, currently using C# (see Figure 19).

 58

P R IS M A A R C H IT E C T U R A L M O D E L

P R IS M A IN F R A S T R U C T U R E (M ET A L E V E L ; S h ared P ro p er F u n ctio n alities)

P R IS M A A R C H IT E C T U R A L M O D E L

P R IS M A IN F R A S T R U C T U R E (M ET A L E V E L ; S h ared P ro p er F u n ctio n alities)

Figure 19 PRISMA Infrastructure

The services of this infrastructure are of two types. The first type of services are those

services that a cooperation is needed between the architectural elements of the software

architecture and the infrastructure, that is, the architectural elements send some requests to

the infrastructure and the infrastructure sends them results. While, the second kind of services

are the ones that can be claimed as alarms in which the infrastructure sends orders to the

architectural elements without their own petition.

This infrastructure can be seen as an abstract layer between the PRISMA architectural

model specification and the different platforms of technology. In other words, it is an abstract

middleware that hides some complex functionality from the final application.

3.6 A Distribution Analysis For PRISMA

This section demonstrates two approximations that were taken into account in order to

reach to the final distribution architectural model presented in the previous sections. Each

possible approximation has a different view of distribution where each one has its own benefits

and drawbacks. The concluding distribution model is the combination of both views of

distribution achieving to a distribution model with the benefits of both approximations.

To explain the approximations, a simple bank system with different branches is going to

be used to show the benefits and drawbacks of each approximation. The example is the

following (see Figure 20):

An administrator of a bank system is a mobile user. She/he determines where to move

her/himself i.e. she/he controls from where to access to the bank system. Whereas, the

administrator can also move a bank account to her/his location. Therefore, the mobility of the

account can be controlled by the environment. As well, when the account detects that its

principal bank office has changed, the account moves itself to the location of this bank office

(i.e. the component moves due to a change in its state).

59

AccountAdministrator

Connector

AccountAccountAdministratorAdministrator

ConnectorConnector

Figure 20 Distributed Administrator and Account connected in a Bank System
architectural model

The two approximations that were taken into account are:

- Architectural elements are unaware of their location and thus a different entity in the

architectural model should be responsible for distribution matters

- Architectural elements are location aware and have can control decisions on their

distribution.

In the PRISMA model the entities that can be taken into consideration for being

responsible of the distribution characteristics are the proper architectural elements and the

attachments. The architectural elements can have distribution properties in order to be aware

of their proper locations and to be in control of the location changes. While the attachment can

be the entity responsible of the distribution characteristics of the architectural elements it

attaches. The attachment is chosen to have this responsibility due to the fact that the

attachment is the only entity in the PRISMA model which does not loose its reusability and is

aware of both components and connectors.

3.6.1 Case1: Components and Connectors are Unaware of their
Distribution.

This approach proposes that the architectural elements are unaware of their location and

are not in control of their mobility. The entities responsible of the distribution properties are the

attachments (see Table 1). The attachments should be aware of the locations of the

architectural elements they connect, have the mobility services and restrict the locations of the

architectural elements they connect.

Table 1 Instances of components and connectors unaware of their location and
Attachments are the entities that are location aware of the instances they attach

 60

 Location

ArchElement

Component_Instance Connector_Instance

Component ---- ----

Connector ---- ----

Attachment X X

For this approximation, each attachment is specified by identifying which port of an

instance of a component is attached with which role of an instance of a connector. Then for

each attachment, the distribution properties of its participants (component and connector

instances) are specified. For example, for the attachment between the administrator and

connector, the distribution properties of the administrator and the distribution properties of the

connector are specified. The specification of the attachments for the bank system example

would look as the following:

Attachments

Administrator.Port<>Connector.Role2;

Administrator.location=X;

Administrator.Constraints

 always{location< x}

Administrator.Services

 move(newLoc:loc);

 Valuations

 location:=newLoc;

Connector.location=Y;

Connector.Constraints

 always{location>0 & location< x}

Connector.Services

 move(newLoc:loc)

 Valuations

 location:=newLoc;

Connector.Role1<>Account.Port

Connector.location=Y;

Connector.Constraints

 always{location>0 & location< x}

 Connector.Services

 move(newLoc:LOC);

 Valuations

 location:=newLoc;

61

 Account.location=Z;

After we have seen how the specification of an attachments example would look like in

this approximation, the following remarks could be concluded concerning reusability, mobility,

expressiveness and distributed communication:

• Reusability: The distribution properties as noticed are tangled in the specification

of the attachments. A mechanism that provides reusability should be applied.

PRISMA uses the aspect-oriented approach in which we could use distribution

aspects to encapsulate the properties, however, an aspect should be weaved with

a functionality which attachments neglect. This is why in the previous

specification, for each of the attachments of the connector the same distribution

properties are repeated.

• Mobility: The mobility of each architectural element has to go through the

attachments of that architectural element. For example, when the Administrator

decides to move an account to its location the move service of the Account should

be invoked in all its associated attachments. In order to do so the Account cannot

be attached to other components by a different connector of the Account. Another

limitation is that there cannot be any constraint that the environment of a

component cannot affect on its mobility. This is due to the fact that for the

attachments all architectural elements are the environment. Therefore, they

cannot differentiate between the petitions of mobility that come from the

environment and the petition for mobility that occur due to the change of state of

an architectural element.

• Expressiveness: The expressiveness of mobility is very complicated. This is due

to the fact that all requested mobility services will pass through the attachments.

In this case, there should be a mechanism to differentiate between the distribution

services requested to the attachments and the services requested to the

architectural elements that pass through the attachments.

• Distributed Communication: The communication is very appropriate. This is

because the attachments are aware of the locations of each of the components

and connectors they attach. In this way, when the attachments receive the service

of an interface (port or role), they know to whom to send it and to where. This

approximation could be very similar to a name service in which the names of the

interfaces and there references are stored.

 62

Going through the previous points we can conclude that this approach has a good

contribution in distribution communication. However, the reusability which is one of the goals

that PRISMA achieves is lost for the distribution properties. In addition, the mobility of the

architectural element and its expressiveness is somehow complicated. Therefore, we had to

solve them in some manner.

3.6.2 Case 2: Components and Connectors are Aware of their
Distribution by adding a Distribution Aspect.

In this section, we are going to analyze the situation where the architectural elements are

aware of their location and have the authority to control it (see Table 2). In PRISMA the

properties of architectural elements are encapsulated in aspects which are then weaved with

each other. Therefore, in this approach the distribution properties of each architectural element

are described in a distribution aspect that is added to the set of other aspect that composes it.

Table 2 Instances of components and connectors are the only entities of the
architecture aware of their locations through their distribution aspect.

 Location

ArchElement

Component_Instance Connector_Instance

Component X ----

Connector ---- X

Attachment ---- ----

This approach is used in the definition of the distribution aspects in [4] and contains the

full example specified in this approach. The distribution properties are specified including a

location attribute at the type definition level. Then the distribution aspect is weaved with the

other aspects of the architectural element in the Component definition by specifying the

synchronizations of the services between the aspects. Then in the configuration level when the

architectural elements are instantiated the location of each instance is given a value. A simple

specification of the account architectural element aware of its location by weaving a distribution

aspect to its set of aspects is the following:

Distribution Aspect Mbile using Mblty

 Attributes

63

 location: LOC NOT NULL;

 X: LOC NOT NULL;

 Constraints

 always{ location>0 & location< x} ;

 Services

 move(out Location)

 End_Distribution Aspect Mbile;

Component_type Account

 Ports

 Moves_Acc: Mblty;

 End_Ports;

 Functional Aspect

 Import BankFunctionality: Functional Aspect;

 Weaving

 Import Distribution Aspect : strangerAffectsMyMobiility

 move(LOC) after Change_PBankOffice;

 End_Weaving;

End_Component Account;

Analyzing this approach the following can be noticed:

• Reusability: The distribution properties are encapsulated in a distribution aspect

which can be specified independently of the architectural elements they will be

added to. Thus, different architectural elements with same distribution behaviour

can use the same distribution aspect.

• Mobility: The mobility of each architectural element can be controlled by the

architectural element. This allows to restrict e.g. that the Administrator is in control

of its own locations and that the environment cannot affect its locality. In addition,

in this way an Account can specify that both the environment (the Administrator

can move it) and its mobility can depend on its state at the same time.

• Expressiveness: The expressiveness of mobility is expressed as an additional

service of the architectural element. The architectural element can specify that it

offers its service to the environment by offering it in a port.

 64

• Distributed Communication: As the architectural elements are unaware of the

other architectural elements of the architecture, the locations of the destinations of

the messages are unknown. This lacks the availability to model a distributed

communication.

3.6.3 The Actual Distribution Model in PRISMA

Each approximation previously presented for distribution in PRISMA has its benefits and

drawbacks. Table 3 resumes the different properties of each approximation. The second

distribution approximation of adding a distribution aspect to the architectural elements is quite a

tidy approach because it follows the PRISMA characteristics and uses the aspect-oriented

approach to define a distribution model. On the other side, it is weak in specifying a distributed

communication in the PRISMA model. While, the first approximation of externalizing the

distribution characteristics in the attachments gives additional functionality to PRISMA, in

specifying the distribution communication and representing a Domain Name Server which

exists nowadays in the technologies, such as CORBA [17].

Table 3 The contribution of each distribution approximation on the PRISMA model.

Properties

Approach

Reusability Mobility Expressiveness Distributed
Communication

1 X X X √

2 √ √ √ X

Table 4 Components and Connectors are aware and control their locations. In
addition the Attachments are location aware of the instances they attach.

 Location

ArchElement

Component_Instance Connector_Instance

Component X ----

Connector ---- X

Attachment X X

65

As a conclusion, a combination of the two previous approaches can be made in order to

gain the advantages of both approximations as it can be seen in Table 4. We can preserve the

idea of adding a distribution aspect with the distribution properties that have control over the

mobility and as well add location information of the instances of the architectural elements to

the attachments. In this way we can have the benefits of both approaches. We achieve to an

adequate distribution model represented at the type definition language with the distribution

aspects as and the following specification at the configuration level:

Architectural Model

 Import Types

 Components

 Administrator,Account;

 Connectors

 Connector;

 End Import Types

 Instances

 Administrator: Admin(Location=X);

 Connector: Con(Location=Y);

 Account: Acc(Location=Z);

 End_Instances

 Attachments

 Admin(location, Port)<>Con(location, Role1);

 Con(location, Role2)<>Acc(location, Port);

 End_Architectural Model

The previous specification shows that when the architectural elements are instantiated, a

value to their locations is given. Then the location of each instance is registered in the

attachments. When an instance changes its location, a notification has to be made to its

attachment in order to change the location values. This service is provided by the PRISMA

meta-level.

3.7 Summary and Conclusions

This chapter introduces the distribution model proposed for PRISMA. The distribution

concepts and primitives have been included in the PRISMA metamodel. The PRISMA

 66

language supports the primitives for defining distributed software architectures with mobile and

replicable architectural elements.

Different cases for a distribution model for PRISMA have been considered. Reusability,

mobility, PRISMA language expressiveness and distributed communication have been taken

into account for reaching to a suitable model.

In the future, Ambient calculus [12] is going to be used to formalize the PRISMA

distribution model. Ambient calculus is a calculus that describes the movement of processes

and devices.

CHAPTER 4. CONCEPTUAL

DISTRIBUTION PATTERNS FOR

PRISMA

4.1 Introduction

Patterns are used in software development to identify common problems, abstracting the

problem and solution. In this way, a problem-solution catalogue can be obtained where each

problem has a name with possible solutions. Thus, patterns break down the problem to

decision points making the advantages and disadvantages of the design alternatives (possible

solutions) available at each decision point. The solutions of the patterns can be reused

adapting them in similar problem situations reducing the time, costs and efforts of starting to

solve the problems from scratch. However, experience and skills are fundamental keys

required to tailor patterns to your specific requirements.

Figure 21 Patterns in soccer

 68

While patterns have been applied recently to software development, people have been

using patterns in their daily life since centuries. Patterns have been used to perform complex

tasks such as sports (see Figure 21), music, science, architecture [3] and industry. Applying

patterns to software development promises the same benefits to software as it does to

industrial technology: predictability, risk mitigation, and increased productivity.

In software development patterns emerged in the object-oriented design through the

popularity of the book “Design Patterns: Elements of Reusable Object-Oriented Software” [22].

The book presents a set of object-oriented design patterns which help the construction and

reuse of software components. The patterns are described through a specification format

denominated as the GoF format in order to facilitate their comprehension. Since then, patterns

have been used in all areas of software such as patterns for user interface [44].

The huge and complex nature of distributed systems can be influenced by many problems

which can produce their breakdown. Thus, we consider patterns as an essential technique in

developing distributed software systems. The problem identification and break down and the

solution reusability and adaptability which patterns enable, facilitate the development process

of the distributed systems.

4.2 Mobility and Replication Reconfiguration Patterns in

PRISMA

For developing distributed systems in our PRISMA architectural model, a set of

conceptual mobility and replication patterns are described through the PRISMA ADL. The

patterns are classified as conceptual following Riehle proposal [63] that a conceptual pattern is

a pattern which is described in terms and concepts of the problem space and oriented to

specification, independent of their design.

 The patterns are stored in a patterns repository to enable the reusability of their

specification (see Figure 22). The patterns provide guidelines to the software developer in

building the distributed software architecture of the distributed software system reducing its

time, cost and effort and increasing its productivity.

P attern s
P attern

R ep o sito ry S to res

Figure 22 Storage of Pattern Specification in a Repository

The PRISMA patterns describe situations in which the software architecture has to be

reconfigured either through mobility or replication of the architectural element instances at

69

execution-time. These situations occur due to run-time, context and changes in the

requirements that can affect on the performance of the architectural instances of the

architecture. Therefore, the instances are either relocated or replicated to super pass possible

problems. These patterns were first introduced in [5].

Our proposal of using patterns is done through the aspects of the architectural elements.

Patterns can easily make up aspects in aspect-oriented software architecture as shown in

Figure 23. Each pattern defines the case in which an element can be replicated or moved. The

architect can choose these patterns into different replication or distribution aspects. In Figure

23, the small balls number 1 and 3 represent different replication and distribution aspects made

of different patterns from a library (repository), and the small ball number 2 represents a

functional aspect. The election of the different patterns depends on the behaviour of the

architecture that is needed. Analysts have to import them to form either a replication or

distribution aspect, and then, aspects are weaved (composed) with other aspects to create an

architectural element. As a result, an architectural element is formed by a set of aspects and

an aspect is defined by one or more patterns.

Patterns

Weaving

Architectural
Elements

Aspects

1

2

Importation

1

2

3

Patterns

Weaving

Architectural
Elements

Aspects

1

2

Importation

1

2

3

Figure 23 Use of patterns for the development process in PRISMA.

To specify many essential services necessary to specify the patterns, some language

primitives are introduced in the PRISMA ADL. These pattern services are services

implemented through the PRISMA middleware introduced in section 3.5. These are the

additional services implemented above the different platform technologies to provide unique

PRISMA functionalities. The services of the infrastructure used in the patterns specification are

detailed in Table 5.

 70

Table 5 The PRISMA infrastructure services for the specification of the distribution
patterns

Infrastructure Services Description

move(newlocation:loc)

The architectural element asks the

infrastructure to move it to the indicated

location specified in the parameter.

replicate(newlocation:loc)

The architectural element asks the

infrastructure to replicate it to the indicated

location specified in the parameter.

SearchClientLocationMostInvoked(

output Services, input clientL:loc)

The architectural element asks the

infrastructure to search for the location of

the client which most invoked the services

specified in the parameter output. The

infrastructure returns the location to the

architectural element.

SearchServerLocationMostReq(

output Services, input serverL:loc)

The architectural element asks the

infrastructure to search for the location of

the server which most served the services

specified in the parameter output. The

infrastructure returns the location to the

architectural element.

VolumeExceeds()

This service is an alarm that is

invoked by the infrastructure to the

architectural element informing it that the

volume of data interchanged between two

architectural elements is exceeded.

LatencyExceeds()

This service is an alarm that is

invoked by the infrastructure to the

architectural element informing it that the

latency of the response time of a service

has exceeded.

71

Infrastructure Services Description

entersNewLocation(input

NewLocation)

This service is invoked by the

architectural element to the infrastructure

to respond to an alarm. Depending on the

alarm the infrastructure returns to the

architectural element the adequate new

location.

In this chapter, different mobility and replication patterns are introduced through a pattern

template. The following sections are part of the template used to explain the distribution

patterns:

• Pattern Number: The identifier of the pattern in the catalogue.

• Pattern Name: A name is given to describe the problem solved.

• Problem: The situation to which a component needs to react to by moving.

• Solution.

- Description: A brief description of the solution.

- Participants: The different entities of the PRISMA model that participate

to specify the patterns

- Services: The services that should be provided in order to be able to

solve the problem considering that the distribution issues (distribution

aspect) are independent of the functionality of a component.

- Graphical Representation: The representation of the pattern is shown

using the UML sequence diagrams to show the interaction among the

participants of a pattern.

- Representation in an ADL: The representation of the pattern in an ADL.

It is important to notice that in the representation of the ADL the words

marked in italics are to distinguish the services of the PRISMA

infrastructure from others.

 72

• Special Cases: Special cases of the pattern.

• Consequences: The impact obtained by applying the pattern on the software

architecture.

• Related Patterns: Patterns are related to this pattern and the differences between

them.

• Example: An example is used to explain to show how the pattern is used.

4.3 Mobility Reconfiguration Patterns

This section identifies problems that can be caused due to the in-proper location of the

architectural element instances of a software architecture at run-time or situations where the

relocation could improve the performance of the architecture. The patterns prevent the

occurrence of the problems by detecting an increment of a threshold and then moving the

architectural element instances to an adequate location depending on the situation. The

patterns discussed in this section are summarized in Table 6.

Table 6 The Mobility Reconfiguration Patterns explained in this section

MP.

Number

Pattern Name

MP.01 Excess of the arrival rate.

MP.02 Excess of the request rate.

MP.03 Excess in the volume of data

interchanged.

MP.04 Excess of latency.

MP.05 Change in system

requirements.

The following patterns are specified using the format explained in Section 4.2.

4.3.1 MP.01- Pattern: Excess of the arrival rate.

Problem.

73

The arrival rate is the total amount of services that arrive to a component. The

higher the rate of the services that arrive to the architectural element, the higher the

probability an element acts as a server to different client architectural elements. The

element cannot have an optimized communication with all its clients if they are all

distributed.

Solution.

-Description:

When the arrival rate exceeds a limit the architectural element moves to the

location of the client that most frequently requests its services.

 - Participants:

• The aspects of the architectural element: Each time the interested in

services of an aspect is executed the aspects are weaved with the

distribution aspect

• The distribution aspect of the architectural element: The distribution

aspect calculates the in services invoked and notifies the PRISMA

infrastructure that the threshold has exceeded. It receives the proper

location (this is to check the location if the location of the architectural

element is restricted) and moves to the location.

• The PRISMA infrastructure: The PRISMA infrastructure searches for

the most adequate location of the new location.

 - Services:

• To calculate the arrival rate: A service which calculates the arrival rate of the

services to the component should exist.

• When the arrival rate exceeds a certain limit, the component needs to know

which client has requested its services most frequently.

• To move the server component to the location of the client component that

most frequently requests its services.

- Graphical Representation:

 74

W eaving of
Architectural Elem ent

D Istribution
Aspect

PR ISM A
Infrastructure

2: out SearchClientLocationM ostInvoked()

3: in SearchClientLocationM ostInvoked()

This will be
called when the
arrivalR ate
exceeds the
threshold

1: calculateArrivalR ateService()

This is executed
after an in service of
an aspect of an
architectural
elem ent

-Representation in ADL:

Distribution Aspect MP1

 Attributes

 arrivalRate : nat(0);

 arrivalRateLimit : nat NOT NULL;

 clientL : loc;

 Services

 move(ClientL:loc)

 calculateArrivalRateService()

 Valuations

[calculateArrivalRateService()

arrivalRate:=arrivalRate+1;

 out SearchClientLocationMostInvoked(Services);

 in SearchClientLocationMostInvoked(CL:loc)

 Valuations

 [SearchClientLocationMostInvoked(CL)] clientL:=CL;

75

 Triggers

 MOVE when

 {arrivalRate>=arrivalRateLimit};

 operations

 MOVE(Services, CL, newlocation) transaction:

 MOVE0 ≡ out
SearchClientLocationMostInvoked(Services).MOVE1;

 MOVE1 ≡ in SearchServerLocationMostInvoked(CL).MOVE2;

 MOVE2 ≡ move(newlocation);

End_Distribution Aspect MP1

Architectural_type Architectural_Element Name

 Port

 ….

 End_Port;

 Import MP1: Distribution Aspect

 Import AspectName: Aspect_Type

 Weaving

 calculateArrivalRate() after in Services();

 End_Weaving;

End_Architectural_type Name;

Special Cases.

• How many times a service is invoked in the whole life of the server
component instead of how many times a service is invoked per unit of time.

• Another case is when we are interested in more than a requested service
from only one client.

• To calculate the arrival rate of a concrete interface or port.
• To calculate the arrival rate of the services of a concrete aspect of the

architectural element.

Consequences.

 76

• Maintainability: When a client and a server are communicating locally, the
maintainability of the communication is easily accomplished. This is due to
the fact that when the components are close the breakdowns that may affect
the communication channel between the client and the server are reduced.

• Reusability: The solution can be easily reused by any entity responsible for
the distribution properties of an architectural model independently from its
functionality. However, an architectural model which does not make this
separation can still reuse the pattern; but, it does not achieve to the
independence of the functionality from distribution.

• Flexibility: This pattern is easily adapted to other distributed behaviours and
to the component functionalities.

Related Patterns.

 RP1.

Example.

A bank system consists of bank offices, accounts and ATMs. Each one of them

is represented in a record of a distributed database. The ATM acts as a server

component to the Bank Administrator. The administrator invokes the

howmanytransactions service which indicates the number of transactions of an ATM.

the analyst needs to move the ATM record to its client location (the Bank

Administrator) when the Bank Administrator invokes a certain a number of times the

howmanytransactions. These requirements are applied in order to facilitate the

communication of the ATM with its client. The specification of the ATM with its

distribution aspect is the following:

 Distribution Aspect MP1

 Attributes

 location: loc NOT NULL;

 arrivalRate : nat(0);

 arrivalRateLimit : nat NOT NULL;

 clientL : loc;

 Services

begin(Location:loc, ArrivalRateLimit:nat)

Valuations

[begin(Location,ArrivalRateLimit)] location:=Location
& arrivalRateLimit:=ArrivalRateLimit;

move(Newlocation:loc)

Valuations

 [move(ClientL)] location:=ClientL;

 calculateArrivalRate();

Valuations

 [calculateArrivalRate()]arrivalRate:=arrivalRate+1;

77

out SearchClientLocationMostInvoked(Services);

in SearchClientLocationMostInvoked(CL:loc)

 Valuations

 [SearchClientLocationMostInvoked(CL)] clientL:=CL;

 Triggers

MOVE when

 {arrivalRate>=arrivalRateLimit};

 operations

 MOVE(Services, CL, newlocation) transaction:

 MOVE0 = out
SearchClientLocationMostInvoked(Services).MOVE1;

 MOVE1 = in SearchServerLocationMostInvoked(CL).MOVE2;

 MOVE2 = move(newlocation);

 Protocols

 MP1 ≡begin. MP11;

 MP11 ≡ MOVE + END;

 End_Distribution Aspect MP1;

 Component_type ATM

Port

 ….

End_Port;

Import MP1: Distribution Aspect

Import ATMFunc: Functional Aspect ;

 Weaving

 calculateArrivalRate() after

 in
howmanytransactions();

 End_Weaving;

 End_Component_type ATM;

 78

4.3.2 MP.02- Pattern: Excess of the request rate.

Problem.

The request rate is the total rate of services that a client architectural element

requests. The request rate indicates how much essential is the dependence of this

architectural element to the functionalities of other elements. The client cannot have

an optimized communication between its servers if they are far apart.

Solution.

-Description:

When the request rate exceeds a limit the client element moves to the location

of the server to which most frequently requests.

 - Participants:

• The aspects of the architectural element: Each time the interested out
services of an aspect are requested the aspects are weaved with the

distribution aspect

• The distribution aspect of the architectural element: The distribution

aspect calculates the out services requested and notifies the PRISMA

infrastructure that the threshold has exceeded. It receives the proper

location (this is to check the location if the location of the architectural

element is restricted) and moves to the location.

• The PRISMA infrastructure: The PRISMA infrastructure searches for

the most adequate location for the new location.

 - Services:

• To calculate the total request rates of the services.

• When the request rate exceeds a certain limit, the architectural element

needs to be aware of which server it requests most frequently.

• To move the client component to the location of the server element it

most frequently requests.

- Graphical Representation:

79

W eaving of
Architectural Elem ent

D Istribution
Aspect

PR ISM A
Infrastructure

This will be
called when the
requestlR ate
exceeds the
thresholdThis is executed

after an out service
of an aspect of
architectural
elem ent

1: calculateR equestR ateService()
2: out SearchServerLocationM ostInvoked()

3: in SearchServerLocationM ostInvoked()

-Representation in ADL:

Distribution Aspect MP2

Attributes

requestRate : nat(0);

requestRateLimit: nat NOT NULL;

serverL : loc;

Services

calculateRequestRate()

 Valuations

 [calculateRequestRate()] requestRate:= requestRate
+1;

in SearchServerLocationMostReq(SL:loc)

 Valuations

 [SearchServerLocationMostReq(SL)] serverL:=SL;

 80

Triggers

 MOVE(Services, SL, Newlocation) when

 {requestRate >=requestRateLimit};

Operations

 MOVE(Services, SL, Newlocation) transaction:

 MOVE0 = out
SearchServerLocationMostReq(Services).MOVE1;

 MOVE1 = in SearchClientLocationMostReq(SL).MOVE2;

 MOVE2 = move(Newlocation);

End_Distribution Aspect MP2

Architectural_type Architectural_Element Name

Port

 ….

End_Port;

Import MP2: Distribution Aspect

Import AspectName: Aspect_Type

 Weaving

 calculateRequestRate() after out Services();

 End_Weaving;

End_Architectural_type Architectuarl_Element Name;

Special Cases.

• For example, a special case could be how many times a client

architectural element requests the set of service in its whole life instead

of how many times a client architectural element requests services per

unit of time.

• Another case is when we are interested in more than a requested

service from the same client.

Consequences.

81

• Maintainability: This pattern optimizes the communication between

the client and a server. However, as a client can have many servers the

client constantly moves every certain unit of time to a server that it

highly requests.

• Reusability: The solution can easily be reused by any entity

responsible for the distribution properties of an architectural model

independently from its functionality. However, an architectural model

which does not make this separation can still reuse the pattern; but, it

does not achieve to the independence of the functionality from

distribution.

• Flexibility: This pattern is easily adapted to other distributed

behaviours and to the component functionalities.

Related Patterns.

 No related patterns.

Example.

A bank system consists of bank offices, accounts and ATMs. Each one of them

is represented in a record of a distributed database. The ATM acts as a client

component to the Account. The ATM requires the balance and the withdraw

services. These requirements are applied in order to facilitate the communication of

the ATM with its client. The specification of the ATM with its distribution aspect is the

following:

Distribution Aspect MP2

 Attributes

location: loc NOT NULL;

requestRate : nat(0);

requestRateLimit : nat NOT NULL;

serverL : loc;

 Services

begin(Location:loc, RequestRateLimit:nat)

Valuations

[begin(Location,RequestRateLimit)]

location:=Location &
requestRateLimit:=RequestRateLimit;

 82

move(Newlocation:loc)

Valuations

[move(ServerL)] location:=ServerL;

calculateRequestRate()

Valuations

[calculateRequestRate()] requestRate:= requestRate +1;

in SearchServerLocationMostReq(SL)

Valuations

[SearchServerLocationMostReq(SL)] serverL:=SL;

 Triggers

MOVE(Services, SL, newlocation) when

 {requestRate >=requestRateLimit};

 Operations

MOVE(Services, SL, newlocation) transaction:

MOVE0 ≡ out SearchServerLocationMostReq(Services).MOVE1;

MOVE1 ≡ in SearchServerLocationMostReq(SL).MOVE2;

MOVE2 ≡ move(newlocation);

 Protocols

MP2 ≡ begin. MP21;

MP21 ≡ MOVE + END;

End_Distribution Aspect MP2;

 Component_type ATM

Port

 ….

End_Port;

Import MP2: Distribution Aspect

Import ATMFunc: Functional Aspect ;

Weaving

 calculateArrivalRate() after

 out balance();

 calculateArrivalRate() after

 out withdrawal();

 End_Weaving;

83

 End_Component_type ATM;

4.3.3 MP.03- Pattern: Excess in the volume of data
interchanged.

Problem.

The volume of data interchanged in a network can generate saturation in the

network, especially, in cases where the target of the data can not process such

amount of information. Many times the bandwidth of the communication channel

can’t be increased and it is necessary to cancel the communication in order to avoid

saturation.

Solution.

-Description:

In order to guarantee that the destiny architectural element receives the data,

the source component moves to the location of the destination.

 - Participants:

• The distribution aspect of the architectural element: The distribution

aspect receives the proper location (this is to check the location if the

location of the architectural element is restricted) and moves to the

location.

• The PRISMA infrastructure: The PRISMA infrastructure notifies the

distribution aspect of an excess of the data volume and searches for

the most adequate location for the new location.

 - Services:

 84

• To detect when the volume of data reaches a certain limit.

• To move the component to the location of the receiver of the data.

- Graphical Representation:

D Istribution
Aspect

PR ISM A
Infrastructure

This service is
requested so
as to introduce
the new
location to ...

This is executed
when the data
volum e exceeds

1: Volum eExceeds()

2: entersNewLocation()

3: entersNewLocation()

-Representation in ADL:

 Distribution Aspect MP3

 Attributes

 exceedVolume: bool(false);

 newlocation: loc;

 Services

in VolumeExceeds()

 Valuations

 [VolumeExceeds()] exceedVolume:=true;

in entersNewLocation(NewLocation)

85

 Valuations

 [entersNewLocation(NewLocation)]
newLocation:=Newlocation;

Triggers

MOVE() when

 {exceedVolume=true; };

Operations

MOVE(Services, SL, newlocation) transaction:

MOVE0 ≡ out entersNewLocation().MOVE1;

MOVE1 ≡ in entersNewLocation(NewLocation).MOVE2;

MOVE2 ≡ move(newlocation);

End_Distribution Aspect MP3

Special Cases.

• The volume of data interchanged with a concrete component

Consequences.

• Maintainability: This pattern ensures that the data interchanged

between two components reaches its destination.

• Reusability: The solution can easily be reused by any entity

responsible for the distribution properties of an architectural model

independently from its functionality. However, an architectural model

which does not make this separation can still reuse the pattern; but, it

does not achieve to the independence of the functionality from

distribution.

• Flexibility: This pattern is easily adapted to other distributed

behaviours and to the component functionalities.

Related Patterns.

RP2.

Example.

In a bank system there are elements that calculate statistics from the daily

operations of each ATM every night. In this situation, it would be a bad idea to send

 86

all the operations from all the ATMs via the net at the same time interval, because it

could probably cause a collapse. The element could consider the amount of data to

be sent and move itself to the ATMs in order to get all the data locally, without

affecting the current time response of the whole system.

Distribution Aspect MP3

Attributes

 location: loc NOT NULL;

 exceedVolume: bool(false);

 newlocation: loc;

Services

begin(Location:loc)

 Valuations

 [begin(Location)]

 location:=Location;

in move(NewLocation)

 Valuations

 [move(NewLocation)] location:=Newlocation;

in VolumeExceeds()

 Valuations

 [VolumeExceeds()] exceedVolume:=true;

in entersNewLocation(NewLocation)

 Valuations

 [entersNewLocation(NewLocation)]
newLocation:=Newlocation;

Triggers

MOVE() when

 {exceedVolume=true };

Operations

MOVE(Services, SL, newlocation) transaction:

MOVE0 ≡ out entersNewLocation().MOVE1;

MOVE1 ≡ in entersNewLocation(NewLocation).MOVE2;

MOVE2 ≡ move(newlocation);

 Protocols

MP3 ≡ begin. MP31;

MP31 ≡ MOVE + END;

 End_Distribution Aspect MP3

87

 Component_type ATM

Port

 ….

End_Port;

Import MP3: Distribution Aspect

 …

End_Component_type ATM;

4.3.4 MP.04- Pattern: Excess of latency.

Problem.

Latency is the time it takes for a service to reach the server plus the time it

takes the server to respond (response time). The latency of a requested service

exceeds a specific time means that problems are occurring in the network. If a

certain element detects that a latency of its message has exceeded, then the

element has to try to accommodate his situation as easily as possible so as to

continue his work.

Solution.

-Description:

The architectural element has to try to accommodate itself as easily as possible

in order to continue working. To accomplish this it moves itself to the location of its

server.

 - Participants:

• The distribution aspect of the architectural element: The distribution

aspect receives the proper location (this is to check the location if the

location of the architectural element is restricted) and moves to the

location.

• The PRISMA infrastructure: The PRISMA infrastructure notifies the

 88

distribution aspect of an excess of the latency and searches for the

most adequate location for the new location.

 - Services:

• To calculate the latency.

• To move the component to the location of the server.

- Graphical Representation:

D Istribution
Aspect

PR ISM A
Infrastructure

This service is
requested so
as to introduce
the new
location to ...

This is executed
when the latency of
a certain m essa...

1: LatencyExceeds()

2: entersNewLocation()

3: entersNewLocation()

-Representation in ADL:

 Distribution Aspect MP4

Attributes

 exceedLatency: bool(false);

 newlocation: loc;

89

Services

in LatencyExceeds()

 Valuations

 [LatencyExceeds()] exceedLatency:=true;

in entersNewLocation(NewLocation)

 Valuations

 [entersNewLocation(NewLocation)]
newLocation:=Newlocation;

Triggers

MOVE() when

 {exceedLatency=true};

Operations

MOVE(newlocation) transaction:

MOVE0 ≡ out entersNewLocation().MOVE1;

MOVE1 ≡ in entersNewLocation(NewLocation).MOVE2;

MOVE2 ≡ move(newlocation);

 End_Distribution Aspect MP4

Special Cases.

• For example, a special case could be the average latency of the

requested services of a client component.

Consequences.

• Maintainability: This pattern optimizes the communication between

the client and a server even though there are problems in the network.

• Reusability: The solution can be easily reused by any entity

responsible for the distribution properties of an architectural model

independently from its functionality. However, an architectural model

which does not make this separation can still reuse the pattern; but, it

does not achieve to the independence of the functionality from

distribution.

 90

• Flexibility: This pattern is easily adapted to other distributed

behaviours and to the component functionalities.

Related Patterns.

RP3.

Example.

In a bank system there are elements that calculate statistics from the daily

operations of each ATM every night. In this situation, it would be a bad idea to send

all the operations from all the ATMs via the net at the same time interval, because it

could probably cause a collapse. The element could consider the amount of data to

be sent and move itself to the ATMs in order to get all the data locally, without

affecting the current time response of the whole system.

 Distribution Aspect MP4

Attributes

 exceedLatency: bool(false);

 newlocation: loc;

Services

begin(Location:loc)

 Valuation

 [begin(Location)]

 location:=Location;

in LatencyExceeds()

 Valuations

 [LatencyExceeds()] exceedLatency:=true;

in entersNewLocation(NewLocation)

 Valuations

 [entersNewLocation(NewLocation)]
newLocation:=Newlocation;

Triggers

MOVE() when

 {exceedLatency=true};

91

Operations

MOVE(newlocation) transaction:

MOVE0 ≡ out entersNewLocation().MOVE1;

MOVE1 ≡ in entersNewLocation(NewLocation).MOVE2;

MOVE2 ≡ move(newlocation);

Protocols

 MP4 ≡begin. MP41;

 MP41 ≡ MOVE + END;

 End_Distribution Aspect MP4

 Component_type ATM

Port

 ….

End_Port;

Import MP4: Distribution Aspect

 …

 End_Component_type ATM;

4.3.5 MP.05- Pattern: Change in system requirements.

Problem.

System requirements are volatile and are continuously changing. Occasionally,

these new system requirements alter the location of the architectural element.

Therefore, the architectural element needs to adapt to the new requirements by

moving itself to a new location.

Solution.

-Description:

The architectural element is relocated to the new location depending on the new

requirement.

 - Participants:

 92

• The aspects of the architectural element: When an interesting change

occurs a weaving is performed with the distribution aspect.

• The distribution aspect of the architectural element: The distribution

aspect moves the architectural element.

 - Services:

• To assign a new location depending on the requirements.

• To move the component to the new location.

- Graphical Representation:

D Istribution
Aspect

W eaving of architectural
Elem ent

D epending on the
requirem ents the
service m ove is
invoked.

1: m ove()

-Representation in ADL:

 Distribution Aspect MP5

Services

in move(NewLocation)

 Valuations

 [move(NewLocation)] newLocation:=NewLocation;

 End_Distribution Aspect MP5

 Architectural_type Architectural_Element Name

Port

 ….

End_Port;

Import MP5: Distribution Aspect

Import AspectName: Aspect_Type

93

Weaving

 move() after Service();

End_Weaving;

 End_Architectural_type Architectuarl_Element Name;

Special Cases.

• The new location is determined by consulting a database.

Consequences.

• Maintainability: This pattern ensures the independence of the

evolution of the distribution issues between from the other functionalities

of the component.

• Reusability: The solution can be easily reused by any entity responsible

of the distribution properties of an architectural model independently

from its functionality. Moreover, an architectural model which does not

make this separation can reuse the pattern however, does not achieve

to an independence of the functionality from the distribution.

• Flexibility: This pattern is easily adapted to other distributed behaviours

and to the components functionalities.

Related Patterns.

RP4.

Example.

 94

This pattern can be applied to the example of the bank system in the case a

customer changes its address. Therefore, the main bank office that attends the

customers’ requests and services will have to change to a bank office nearer to

his/her new address. In this situation the customer’s account will move to the new

bank office.

Distribution Aspect MP5

Attributes

 location:loc NOT NULL;

Services

begin(Location:loc)

 Valuations

 [begin(Location)]

 location:=Location;

move(newlocation:loc)

 Valuations

 [move(NewLocation)] location:=NewLocation;

Protocols

MP5 ≡ begin. MP51;

MP51 ≡ move + END;

 End_Distribution Aspect MP5

 Component_type Account

Port

 ….

End_Port;

Import MP5: Distribution Aspect

Import FAccount: Functional Aspect

Weaving

 move() after changeAddress();

End_Weaving;

 End_Component_type Account;

95

4.4 Replication Reconfiguration Patterns

This section presents the patterns where replication is used to prevent problems caused

due to the in-proper location of the architectural element instances of a software architecture at

run-time. The patterns prevent the occurrence of the problems by detecting an increment of a

threshold and then making a distributed replication the architectural element instances to an

adequate location depending on the situation. The patterns discussed in this section are

summarized in Table 7.

The difference between the patterns in this section and the patterns in the previous

section is that in many cases the architectural elements cannot be moved or a local copy is

necessary. In many cases, replication is preferable to mobility for balancing load either of

services or data. In PRISMA, we make it flexible so that the analyst determines the most

adequate situation. However, the analyst needs to keep in mind that the same mobility and

replication patterns are incompatible with each other, i.e. if a mobility and replication pattern

have the same name only one of them should be applied but not both.

Table 7 Replication Reconfiguration Patterns explained in this section

RP.
Number

Pattern Name

RP.01. Unbalanced load.

RP.02. Excess of Volume of Data.

RP.03. Latency of services.
RP.04. System Requirements and Configuration

Adaptation.

The replication patterns are presented in the following:

 96

4.4.1 RP.01- Pattern: Unbalanced load.

Problem.

An architectural element can reach to a state of unbalanced load due to the high

request rate of a certain service. Components that reach to an unbalance load are

mainly architectural elements that are essential for the functionality of the system so if

an architectural element reaches to this state not only this element enters this fatal

state but also the whole system.

Solution.

-Description:

When the arrival rate exceeds a limit the architectural element replicates to the

location of the client that most frequently requests its services.

 - Participants:

• The aspects of the architectural element: Each time the interested in

services of an aspect is executed the aspects are weaved with the

replication aspect.

• The replication aspect of the architectural element: The replication aspect

calculates the in services invoked and notifies the PRISMA infrastructure

that the threshold has exceeded. It receives the proper location (this is to

check the location if the location of the architectural element is restricted)

and replicates to the location.

• The distribution aspect of the architectural element: It receives the proper

location (this is to check the location if the location of the architectural

element is restricted)

• The PRISMA infrastructure: The PRISMA infrastructure searches for the

most adequate location of the new location.

 - Services:

• To calculate the arrival rate of services.

• To detect when the arrival rate exceeds a certain limit.

• To replicate the server component to the locations of the clients of the

services.

- Graphical Representation:

97

W eaving of
Architectural Elem ent

R eplication
Aspect

PR ISM A
Infrastructure

D istribution
Aspect

This will be
called when the
arrivalR ate
exceeds the
threshold

This is executed
after an in service of
an aspect of an
architectural
elem ent

1: calculateArrivalR ateService()
2: out SearchClientLocationM ostInvoked()

3: in SearchClientLocationM ostInvoked()

4: checkLocation()

5: replicate()

before a replicate
service is executed
the location ...

the replicate is
executed if the
location is correct

-Representation in ADL:

Distribution Aspect D

 Attributes

 locMin: loc NOT NULL;

 locMax: loc NOT NULL;

Services

checkLocation(input Location:loc, output checkC:bool)

 Valutions

 [checkLocation(input Location:loc,output
checkC:bool)]

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

 98

[checkLocation(Location,checkC)]checkC:=false;

End_Distribution Aspect D

Replication Aspect RP1

Attributes

arrivalRate : nat(0);

arrivalRateLimit : nat NOT NULL;

clientL : loc;

Services

replicate(ClientL:loc)

calculateArrivalRateService()

 Valuations

 [calculateArrivalRateService()]

 arrivalRate:=arrivalRate+1;

out SearchClientLocationMostInvoked(Services);

in SearchClientLocationMostInvoked(CL:loc)

 Valuations

 [SearchClientLocationMostInvoked(CL)] clientL:=CL;

Triggers

REPLICATE when

 {arrivalRate>=arrivalRateLimit};

Operations

REPLICATE(Services, CL, ClientL) transaction:

REPLICATE0 ≡ out

SearchClientLocationMostInvoked(Services).REPLICATE1;

REPLICATE1 ≡ in

SearchServerLocationMostInvoked(CL).REPLICATE2;

REPLICATE2 ≡ replicate(ClientL);

End_Replication Aspect RP1

Architectural_type Architectural_Element Name

Port

 ….

End_Port;

Import RP1: Replication Aspect

Import D: Distribution Aspect

99

Import AspectName: Aspect_Type

 Weaving

 calculateArrivalRate() after in Services();

 checkLocation(Location,Checkc)
 beforeif(Checkc=true)

replicate(Newlocation);

 End_Weaving;

End_Architectural_type Architectuarl_Element Name;

Special Cases.

• To control the input services of a specific port of an architectural element

• To control the set of input services of the architectural element.

• Instead of controlling the load of a specific port, is to control the load of the

entire imports of an architectural element and detect which one of the set

is causing the highest load to the architectural element.

Consequences.

• Maintainability: When a client and a server are communicating locally,

the maintainability of the communication is easily accomplished. This is

due to the fact that when the components are close the breakdowns that

may affect the communication channel between the client and the server

are reduced.

• Reusability: The solution can be easily reused by any entity responsible

for the distribution properties of an architectural model independently from

its functionality. However, an architectural model which does not make

this separation can still reuse the pattern; but, it does not achieve to the

independence of the functionality from distribution.

• Flexibility: This pattern is easily adapted to other distributed behaviours

and to the component functionalities.

Related Patterns.

MP1.

Example.

 100

A bank system consists of bank offices, accounts and ATMs. Each one of them is

represented in a record of a distributed database. The ATM acts as a server

component to the Bank Administrator. The administrator invokes the

howmanytransactions service which indicates the number of transactions of an ATM.

the analyst needs toreplicate the ATM record to its client location (the Bank

Administrator) when the Bank Administrator invokes a certain a number of times the

howmanytransactions. These requirements are applied in order to facilitate the

communication of the ATM with its client and to balance the load. The specification of

the ATM with its replication aspect and distribution aspect is the following:

 Distribution Aspect D

Attributes

location: loc NOT NULL;

locMin: loc NOT NULL;

locMax: loc NOT NULL;

Services

begin(Location:loc, LocMAx:loc, LocMin:loc)

 Valutions

 [begin(Location,LocMax, LocMin)]

 location:=Location & locMax:=LocMax
&locMin:=LocMin;

checkLocation(input Location:loc, output
checkC:bool)

 Valuations

 [checkLocation(input Location:loc,output
checkC:bool)]

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

Protocols

 DISTRIBUTE :

 DISTRIBUTE ≡ begin.DISTRIBUTE1;

DISTRIBUTE1≡ end+checkLocation;

End_Distribution Aspect D

101

Replication Aspect RP1

Attributes

arrivalRate : nat(0);

arrivalRateLimit : nat NOT NULL;

clientL : loc;

Services

begin(ArrivalRateLimit:nat)

 Valuations

 [begin(ArrivalRateLimit)]

 arrivalRateLimit:=ArrivalRateLimit;

replicate(ClientL:loc)

calculateArrivalRateService()

 Valuations

 [calculateArrivalRateService()]

 arrivalRate:=arrivalRate+1;

out SearchClientLocationMostInvoked(Services);

in SearchClientLocationMostInvoked(CL:loc)

 Valuations

 [SearchClientLocationMostInvoked(CL)] clientL:=CL;

Triggers

REPLICATE when

 {arrivalRate>=arrivalRateLimit};

Operations

REPLICATE(Services, CL, ClientL) transaction:

REPLICATE0 ≡ out

SearchClientLocationMostInvoked(Services).REPLICATE1;

REPLICATE1 ≡ in

SearchServerLocationMostInvoked(CL).REPLICATE2;

REPLICATE2 ≡ replicate(ClientL);

End_Replication Aspect RP1

Component_type ATM

Port

 ….

 102

End_Port;

Import RP1: Replication Aspect;

Import D: Distribution Aspect;

Import ATMFunc: Functional Aspect ;

Weaving

 calculateArrivalRate() after

 in howmanytransactions();

 checkLocation(Location,Checkc)
 beforeif(Checkc=true)
 replicate(Newlocation);

 End_Weaving;

End_Component_type ATM;

4.4.2 RP.02- Pattern: Excess of the volume of data.

Problem.

The volume of data interchanged in a network can generate saturation in the

network, especially, in cases where the target of the data can not process such amount

of information. Many times the bandwidth of the communication channel can’t be

increased and it is necessary to cancel the communication in order to avoid saturation.

Solution.

-Description:

In order to guarantee that the destiny architectural element receives the data, the

source component replicates to the location of the destination balancing the volume of

data and facilitating the communication.

 - Participants:

103

• The replication aspect of the architectural element: The replication aspect

receives the proper location and replicates after checking the correctness

of the location.

• The distribution aspect of the architectural element: It checks the

correctness of the location if the location of the architectural element is

restricted.

• The PRISMA infrastructure: The PRISMA infrastructure notifies the

replication aspect of an excess of the data volume and searches for the

most adequate location for the new location.

 - Services:

• To detect when the volume of data reaches a certain limit.

• To replicate the component to the location of the receiver of the data.

- Graphical Representation:

 104

D istribution
Aspect

W eaving of
Architectural Elem ent

R eplication
Aspect

PR ISM A
Infrastructure

This service is
requested so
as to introduce
the new
location to ...

This is executed
when the data
volum e exceeds

1: Volum eExceeds()

2: entersNewLocation()

3: entersNewLocation()

before a replicate
service is executed
the location is
checked

4: checkLocation()

5: replicate()

The replicate is
executed only if the
location is correct

-Representation in ADL:

Distribution Aspect D

Attributes

locMin: loc NOT NULL;

locMax: loc NOT NULL;

Services

checkLocation(input Location:loc, output checkC:bool)

 Valuations

 [checkLocation(input Location:loc,output
checkC:bool)]

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

End_Distribution Aspect D

Replication Aspect RP2

Attributes

105

 exceedVolume: bool(false);

 newlocation: loc;

Services

replicate(Newlocation:loc);

in VolumeExceeds()

 Valuations

 [VolumeExceeds()] exceedVolume:=true;

in entersNewLocation(NewLocation)

 Valuations

[entersNewLocation(NewLocation)]newLocation:=Newlocation;

Triggers

REPLICATE() when

 {exceedVolume=true};

Operations

REPLICATE (Newlocation,newLocation) transaction:

REPLICATE0 ≡ out entersNewLocation().REPLICATE1;

REPLICATE1 ≡ in entersNewLocation(NewLocation).
REPLICATE2;

REPLICATE2 ≡ replicate(newlocation);

End_Replication Aspect RP2

Special Cases.

• The volume of data interchanged with a concrete component

Consequences.

 106

• Maintainability: This pattern ensures that the data interchanged between

two components reaches its destination.

• Reusability: The solution can easily be reused by any entity responsible

for the distribution properties of an architectural model independently from

its functionality. However, an architectural model which does not make

this separation can still reuse the pattern; but, it does not achieve to the

independence of the functionality from distribution.

• Flexibility: This pattern is easily adapted to other distributed behaviours

and to the component functionalities.

Related Patterns.

MP3.

Example.

In a bank system there are elements that calculate statistics from the daily

operations of each ATM every night. In this situation, it would be a bad idea to send all

the operations from all the ATMs via the net at the same time interval, because it could

probably cause a collapse. The element could consider the amount of data to be sent

and replicate itself to the ATMs in order to get all the data locally, without affecting the

current time response of the whole system.

Distribution Aspect D

Attributes

 location: loc NOT NULL;

 locMin: loc NOT NULL;

 locMax: loc NOT NULL;

Services

begin(Location:loc, LocMAx:loc, LocMin:loc)

 Valuations

 [begin(Location,LocMax, LocMin)]

 location:=Location & locMax:=LocMax &

locMin:=LocMin;

checkLocation(input Location:loc, output
checkC:bool)

 Valuations

 [checkLocation(input Location:loc,output
checkC:bool)]

107

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

Protocols

 D :

 D ≡ begin.D1;

D1≡ end+checkLocation;

End_Distribution Aspect D;

Replicaiontion Aspect RP2

Attributes

 exceedVolume: bool(false);

 newlocation: loc;

Services

in replicate(NewLocation)

in VolumeExceeds()

 Valuations

 [VolumeExceeds()] exceedVolume:=true;

in entersNewLocation(NewLocation)

 Valuations

 [entersNewLocation(NewLocation)]
newLocation:=Newlocation;

Triggers

REPLICATE() when

 {exceedVolume=true };

Operations

REPLICATE(NewLocation, newlocation) transaction:

REPLICATE0 ≡ out entersNewLocation().REPLICATE1;

REPLICATE1 ≡ in entersNewLocation(NewLocation).
REPLICATE2;

REPLICATE2 ≡ replicate(newlocation);

 Protocols

 108

RP2 ≡ begin.RP21;

RP21 ≡ replicate + END;

End_Replication Aspect RP2

Component_type ATM

Port

 ….

End_Port;

Import D: Distribution Aspect

Import RP2: Replication Aspect

Weaving

 checkLocation(Location,Checkc)

 beforeif(Checkc=true)

 replicate(Newlocation);

 End_Weaving

End_Component_type ATM;

4.4.3 RP.03- Pattern: Excess of latency.

Problem.

Latency is the time it takes for a service to reach the server plus the time it takes

the server to respond (response time). The latency of a requested service exceeds a

specific time means that problems are occurring in the network. If a certain element

detects that a latency of its message has exceeded, then the element has to try to

accommodate his situation as easily as possible so as to continue his work.

Solution.

109

-Description:

The architectural element has to try to accommodate itself as easily as possible in

order to continue working. To accomplish this it replicates itself to the location of its

server.

 - Participants:

• The replication aspect of the architectural element: The replication aspect receives

the proper location and replicates after checking the correctness of the location.

• The distribution aspect of the architectural element: It checks the correctness of the

location if the location of the architectural element is restricted.

• The PRISMA infrastructure: The PRISMA infrastructure notifies the replication

aspect of an excess of the latency and searches for the most adequate location for

the new location.

 - Services:

• To calculate the latency.

• To replicate the component to the location of the server.

- Graphical Representation:

 110

D istribution
Aspect

W eaving of
Architectural Elem ent

R eplication
Aspect

PR ISM A
Infrastructure

This service is
requested so
as to introduce
the new
location to ...

This is executed
when the data
volum e exceeds

1: Volum eExceeds()

2: entersNewLocation()

3: entersNewLocation()

before a replicate
service is executed
the location is
checked

4: checkLocation()

5: replicate()

The replicate is
executed only if the
location is correct

-Representation in ADL:

Distribution Aspect D

Attributes

locMin: loc NOT NULL;

locMax: loc NOT NULL;

Services

checkLocation(input Location:loc, output checkC:bool)

 Valution

 [checkLocation(input Location:loc,output checkC:bool)]

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

111

End_Distribution Aspect D;

Repliation Aspect RP3

Attributes

 exceedLatency: bool(false);

 newlocation: loc;

Services

in LatencyExceeds()

 Valuations

 [LatencyExceeds()] exceedLatency:=true;

in entersNewLocation(NewLocation)

 Valuations

 [entersNewLocation(NewLocation)]
newLocation:=Newlocation;

Triggers

REPLICATE(NewLocation, newLocation) when

 {exceedLatency=true;};

Operations

REPLICATE(NewLocation, newLocation) transaction:

REPLICATE0 ≡ out entersNewLocation().REPLICATE1;

REPLICATE1 ≡ in entersNewLocation(NewLocation).
REPLICATE2;

REPLICATE2 ≡ replicate(newlocation);

End_Replication Aspect RP3

Special Cases.

• For example, a special case could be the average latency of the

requested services of a client component.

Consequences.

 112

• Maintainability: This pattern optimizes the communication between the

client and a server even though there are problems in the network.

• Reusability: The solution can be easily reused by any entity responsible

for the distribution properties of an architectural model independently from

its functionality. However, an architectural model which does not make

this separation can still reuse the pattern; but, it does not achieve to the

independence of the functionality from distribution.

• Flexibility: This pattern is easily adapted to other distributed behaviours

and to the component functionalities.

Related Patterns.

MP4.

Example.

In a bank system there are elements that calculate statistics from the daily

operations of each ATM every night. In this situation, it would be a bad idea to send all

the operations from all the ATMs via the net at the same time interval, because it could

probably cause a collapse. The element could consider the amount of data to be sent

and replicate itself to the ATMs in order to get all the data locally, without affecting the

current time response of the whole system.

Distribution Aspect D

 Attributes

 location: loc NOT NULL;

 locMin: loc NOT NULL;

 locMax: loc NOT NULL;

Services

begin(Location:loc, LocMAx:loc, LocMin:loc)

 Valution

 [begin(Location,LocMax, LocMin)]

 location:=Location & locMax:=LocMax &

locMin:=LocMin;

checkLocation(input Location:loc, output checkC:bool)

 Valuation

 [checkLocation(input Location:loc,output checkC:bool)]

 {Location>locMin & Location<locMax}

113

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

Protocols

 D :

 D ≡ begin.D1;

D1≡ end+checkLocation;

End_Distribution Aspect D;

Repliation Aspect RP3

Attributes

 exceedLatency: bool(false);

 newlocation: loc;

 Services

in LatencyExceeds()

 Valuations

 [LatencyExceeds()] exceedLatency:=true;

in entersNewLocation(NewLocation)

 Valuations

[entersNewLocation(NewLocation)]newLocation:=Newlocation;

 Triggers

REPLICATE(NewLocation, newLocation) when

 {exceedLatency=true;};

Operations

REPLICATE(NewLocation, newLocation) transaction:

REPLICATE0 ≡ out entersNewLocation().REPLICATE1;

REPLICATE1 ≡ in entersNewLocation(NewLocation).
REPLICATE2;

REPLICATE2 ≡ replicate(newlocation);

Protocols

 REPLICATEP ≡begin. REPLICATEP1;

 REPLICATEP1 ≡ replicate + END;

 114

 End_Replication Aspect RP3

 Component_type ATM

Port

 ….

End_Port;

Import D: Distribution Aspect

Import RP3: Replication Aspect

Weaving

 checkLocation(Location,Checkc)

 beforeif(Checkc=true)

 replicate(Newlocation);

 End_Weaving

 End_Component_type ATM;

4.4.4 RP.04- Pattern: System Requirements and Configuration
Adaptation.

Problem.

System requirements are volatile and are continuously changing. Occasionally,

these new system requirements alter the configuration of the software architecture.

Therefore, the architectural element needs to adapt to the new requirements by

replicating itself to a new location.

Solution.

-Description:

The architectural element is replicated to the new location depending on the new

requirement.

 - Participants:

• The aspects of the architectural element: When an interesting change

115

occurs a weaving is performed with the replication aspect

• The distribution aspect of the architectural element: The distribution

aspect checks the new location.

• The replication aspect of the architectural element: The replication aspect

replicates the architectural element.

 - Services:

• To assign a new location depending on the requirements.

• To replicate the component to the new location.

- Graphical Representation:

D sitribution
Aspect

R eplication
Aspect

W eaving of the
architectural Elem ent

before a replicate
service is executed
the location is
checked

The replicate is
executed only if the
location is correct

2: replicate()

1: checkLocation()

-Representation in ADL:

Distribution Aspect D

 Attributes

 locMin: loc NOT NULL;

 116

 locMax: loc NOT NULL;

Services

 checkLocation(input Location:loc, output checkC:bool)

 Valuations

 [checkLocation(input Location:loc,output checkC:bool)]

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

End_Distribution Aspect D;

Replication Aspect RP4

Services

in replicate(NewLocation:loc)

End_Replication Aspect RP4

Architectural_type Architectural_Element Name

Port

 ….

End_Port;

Import RP4: Replication Aspect;

Import D: Distribution Aspect;

Import AspectName: Aspect_Type;

 Weaving

 replicate() after Service();

 checkLocation(Location,Checkc)

 beforeif(Checkc=true)

 replicate(Newlocation);

 End_Weaving;

End_Architectural_type Architectuarl_Element Name;

Special Cases.

117

• The new location is determined by consulting a database.

Consequences.

• Maintainability: This pattern ensures the independence of the evolution

of the distribution issues from the other functionalities of the component.

• Reusability: The solution can be easily reused by any entity responsible

of the distribution properties of an architectural model independently from

its functionality. Moreover, an architectural model which does not make

this separation can reuse the pattern however, does not achieve to an

independence of the functionality from the distribution.

• Flexibility: This pattern is easily adapted to other distributed behaviours

and to the components functionalities.

Related Patterns.

MP5.

Example.

This pattern can be applied to the example of the bank system in the case a

customer changes its address. Therefore, the main bank office that attends the

customers’ requests and services will have to change to a bank office nearer to his/her

new address. In this situation the customer’s account will replicate to the new bank

office.

Distribution Aspect D

 Attributes

 location: loc NOT NULL;

 locMin: loc NOT NULL;

 locMax: loc NOT NULL;

Services

begin(Location:loc, LocMAx:loc, LocMin:loc)

 Valuations

 [begin(Location,LocMax, LocMin)]

 location:=Location & locMax:=LocMax &

locMin:=LocMin;

checkLocation(input Location:loc, output checkC:bool)

 Valuations

 118

 [checkLocation(input Location:loc,output checkC:bool)]

 {Location>locMin & Location<locMax}

[checkLocation(Location,checkC)]checkC:=true;

 {Location<locMin & Location>locMax}

[checkLocation(Location,checkC)]checkC:=false;

Protocols

 DISTRIBUTE :

 DISTRIBUTE ≡ begin.DISTRIBUTE1;

DISTRIBUTE1≡ end+checkLocation;

End_Distribution Aspect D;

Replication Aspect RP4

Services

replicate(newlocation:loc)

 Protocols

REPLICATEP ≡ begin. REPLICATEP1;

REPLICATEP1 ≡ replicate + END;

End_Replication Aspect RP4

Component_type Account

Port

 ….

End_Port;

Import D: Distribution Aspect

Import RP4: Replication Aspect

Import FAccount: Functional Aspect

 Weaving

 replicate() after changeAddress();

 checkLocation(Location,Checkc)
 beforeif(Checkc=true)

 replicate(Newlocation);
 End_Weaving;

119

End_Component_type Account;

4.5 Example: An Architectural Element specifying more

than a Distribution Patterns

In this section we present in detail the explanation of the example used several times to

describe the patterns. At the same, the example will use two patterns from the above to show

how more than a pattern can be applied for an architectural element and use the proposal of

Figure 23.

A bank system consists of bank offices, accounts and ATMs. Each one of them is

represented in a record of a distributed database. The ATM acts as a server component to the

Bank Administrator. The administrator invokes the howmanytransactions service which

indicates the number of transactions of an ATM. In addition, the ATM acts as a client

component to the Account. The ATM requires the balance and the withdraw services. The

required services are in an interface called Operations, specified as follows in PRISMA:

Interface IOperations

 Services

 balance();

 withdraw();

End Interface IOperations

In this example, the analyst wants the ATM record to move to its server location (the

Account) when it requests a certain limit of times the services balance and withdraw. Also, the

analyst needs to move the ATM record to its client location (the Bank Administrator) when the

Bank Administrator invokes a certain number of times the howmanytransactions. These

requirements are applied in order to facilitate the communication of the ATM with its client and

server.

 120

In the example MP.01 and MP.02 need to be applied to the ATM distribution aspect. In

MP.01 Excess of the arrival rate is specified. Going back to the Solution part of the template

of MP.01, the first step in specifying the pattern is to calculate the arrival rate. In Figure 5, the

calculateArrivalRate() service sums 1 to the attribute arrivalRate each time the interested

service is invoked. In the second and third step, to detect when the arrival rate exceeds a

certain limit and to move the server component to the location of the client of the services of

the specific service are indicated with the trigger. The trigger calls a transaction MOVE that

has to be executed as one unit. This transaction consists in finding the client which most

frequently invoked the service and moving to this location. The transaction invokes the service

out SearchClientLocationMostInvoked(Service) of the infrastructure which takes the name of

the Service and returns the client location that most frequently invokes the service. The client

location is returned with the service in SearchClientLocationMostInvoked(CL). The value of the

argument is set as the value of the client location by the valuation.

In MP.02 Excess of the request rate is specified. Going back to the Solution part of the

template of MP.02, the first step in specifying the pattern is to calculate the request rate of the

interested services. The calculateRequestRate() service sums 1 to the attribute RequestRate

each time the interested services are invoked. In the second step, to move the component

when the request rate exceeds the limit is indicated with a trigger similar to the explanation of

the MP.01. and using also services of the infrastructure to know the location of the server of

the interface.

The distribution aspect uses the two patterns MP.01 and MP.02.

Distribution Aspect MP1_MP2

Attributes

location: loc NOT NULL;

arrivalRate : nat(0);

arrivalRateLimit : nat NOT NULL;

clientL : loc;

requestRate : nat(0);

requestRateLimit : nat NOT NULL;

serverL : loc;

Services

 begin(Location:loc, ArrivalRateLimit:nat)

121

 Valuation

 [begin(Location,ArrivalRateLimit)]

 location:=Location &

 arrivalRateLimit:=ArrivalRateLimit;

move(newlocation:loc)

 Valuations

 [move(newlocation)] location:=newlocation;

calculateArrivalRate();

 Valuations

 arrivalRate:=arrivalRate+1;

out SearchClientLocationMostInvoked(Services);

in SearchClientLocationMostInvoked(CL)

 Valuations

 [SearchClientLocationMostInvoked(CL)] clientL:=CL;

calculateRequestRate()

 Valuations

 [calculateRequestRate()] requestRate:= requestRate +1;

 in SearchServerLocationMostReq(SL)

 Valuations

 [SearchServerLocationMostReq(SL)] serverL:=SL;

 Triggers

 MOVEC(Services, CL, newlocation) when

 {arrivalRate>=arrivalRateLimit};

 MOVES(Services, SL, newlocation) when

 {requestRate >=requestRateLimit};

 operations

 MOVES (Services, SL, newlocation) transaction:

 MOVE0 = out SearchServerLocationMostReq(Services).MOVE1;

 MOVE1 = in SearchClientLocationMostReq(SL).MOVE2;

 MOVE2 = move(serverL);

 MOVEC(Services, CL, newlocation) transaction:

 MOVE0 = out SearchClientLocationMostInvoked(Services).MOVE1;

 MOVE1 = in SearchServerLocationMostInvoked(CL).MOVE2;

 MOVE2 = move(clientL);

Protocols

MBLTYP ≡begin. MBLTYP1;

 122

MBLTYP1 ≡ MOVE + END;

 End_Distribution Aspect MP1;

The component ATM is specified in the following. The component imports the distribution

aspect which uses the patterns MP.01. and MP.02. Then the distribution aspect has to be

synchronized with the functionality of the component by the weaving. The

calculateArrivalRateService() (which is a service from the distribution aspect) is activated after
the service in howmanytransactions() is activated(which are services of the functionality of the

component). In this way, the distribution aspect is connected with the functionality of the

server-side of the component.

The calculateRequestRate() (which is a service from the distribution aspect) is activated

after the service Out balance and Out withdraw() are activated(which are services of the

functionality of the component and form the interface Ioperations). In this way, the distribution

aspect is connected with the functionality of the client-side of the component.

 Component_type ATM

Port

 ….

End_Port;

Import MP1_MP2: Distribution Aspect

Import ATMFunc: Functional Aspect;

Weaving

 calculateArrivalRate() after

 in howmanytransactions();

 calculateRequestRate() after Out withdraw();

 calculateRequestRate() after Out balance();

End_Weaving;

 End_Component_type ATM;

From the previous specification of the bank system example, note how the patterns can

be highly reused through the aspects. Any component can simply import the distribution aspect

that imports different patterns and adapt it to the functionality of the component. Thus, we

achieve a high level of pattern reusability and a high level of reusability of the distribution

aspect in different components.

123

4.6 Summary and Conclusions

On one hand, distributed systems are actually a necessity and not an additional

accessory. However, many problems are encountered in distributed systems which may cause

the collapse of the system if no solution is given. This chapter identifies many common

problems in distributed systems giving a form of solving them through the mobility and

replication of the architectural elements that compose the systems.

The PRISMA distribution model takes into account these problems and solutions by

organizing them into patterns in which the solutions to the problems can be easily reused.

Therefore, the patterns have been specified using the PRISMA ADL. Also, the PRISMA

infrastructure has to provide extra services to implement the patterns.

In the future, once a tool is developed for the PRISMA framework, the patterns will be

included in the tool. In the case the analyst needs to apply one the identified patterns, the

analyst only has to choose the pattern name needed as an option provided by the tool. The

tool will have the patterns stored in a repository and automatically use the specification of the

pattern solution. The analyst can visually see the specification and can manually adapt the

pattern to necessities of the situation.

CHAPTER 5. GRAPHICAL NOTATION

FOR DISTRIBUTION IN PRISMA

5.1 Introduction

“Modelling is the future” were the words of Bill Gates on the 29th of March, 2004 when the

interviewer of eweek [48] asked him about modelling. In this interview, Bill Gates gave his

vision about the future and the improvements gained by modelling such as customizing

software visually with less written code. The tendency of modelling is not only Microsoft’s

vision for the improvement of software development but also many other companies such as

IBM.

Microsoft is promising a great success for their graphical design tools that will appear as

part of Visual Studio 2005 [60]. They provide a UML-like class diagram that is capable of

reflecting all the language features of Visual Basic .NET and C# in the Microsoft .NET

environment. They offer the ability, once you create your diagrams and once the code is

generated, to navigate from the diagrams to code and vice-versa to ensure that the system is

functioning accurately.

As Visual studio 2005 is not in the market yet, in this work OMG’s (Object Management

Group) UML [69] is going to be used to represent the graphical notation of our ADL. This is

chosen due to the fact that UML up-to-date is the most extended modelling language and

many visual design environments incorporate UML such as IBM Rational Rose [62],

Poseidon[58] or Microsoft’s Visio.

In this chapter, we introduce UML and the mechanisms of extending it. Then, we explain

the elements of the basic PRISMA UML profile defined in [53] that are necessary for defining

the extension and incorporating the concepts related with distribution. Finally, the UML profile

of PRISMA for distribution is presented.

 126

5.2 Bases to define a UML Profile

The standard omg modelling language UML 2.0 [69] is a general purpose language that

can be specialized for different domains using extensibility mechanisms. Profiling is the

standard, built in mechanism in UML. The intention of profiles is to give a straightforward

mechanism for adapting an existing metamodel with constructs that are specific to a particular

domain, platform, or method. Each such adaption is grouped in a profile. It is not possible to

take away any of the constraints that apply to a metamodel such as UML using a profile, but it

is possible to add new constraints that are specific to the profile.

Meta-MetamodelsM3
MOF

Metamodel

Metamodels

M2
UML Class
Metamodel

ModelsM1 UML Class
Model

InformationM0
Objects

Meta-MetamodelsM3
MOF

Metamodel

Meta-MetamodelsM3
MOF

Metamodel

Metamodels

M2
UML Class
Metamodel

ModelsM1 UML Class
Model

InformationM0
Objects

InformationM0
Objects

Figure 24 4-Level Metamodeling Framework

The UML metamodel is capable of having such extensions due to the fact that is based

on a 4-level metamodelling framework (see Figure 24) instantiated from MOF: the meta-

metamodel M3 is where the MOF metamodel is defined, the metamodels M2 where the UML

metamodel is defined as an instance of the MOF metamodel, the models M1 and the

instances.

UML has two forms of extension: the Heavyweight UML extension and Lightweight UML

extension. The Heavyweight UML extension extends the UML metamodel directly through

MOF mechanisms for example by defining new subclasses in the metamodel. The Lightweight

UML extension is to extend UML through a profile. In our work the lightweight extension is

chosen in order to incorporate the profile to a CASE tool.

A profile consists of stereotypes, meta-attributes (tagged values in UML 1.5) and

constraints. A stereotype is used to define specialized model elements on a core UML model

127

element (or other stereotypes) by defining supplemental semantics. The meta-attributes are

individual modifiers with user-defined semantics which gives additional information that is

required to use the model. The meta-attributes are typed with a standard data type. The

constraints are restrictions attached to the stereotypes to make the stereotype different from

the UML model element.

5.3 Background of the PRISMA Profile

In this section, the basic stereotype <<aspect>> of the PRISMA Profile which is

necessary to this work is going to be presented. This is essential due to the fact that the

concepts of the PRISMA distribution model are going to be incorporated to the profile by

extending the <<aspect>> defined in the works of Perez [53]. Therefore it is essential to have

an understanding of the basic PRISMA profile concepts.

The stereotype <<aspect>> is as follows:

- Aspect

The base class of the <<aspect>> stereotype which is associated to the aspect concept of

the PRISMA model is the UML metaclass class (see figura 35). This is due to the fact that the

aspect as the metaclass class is described by a template with attributes, operations, methods

and semantics. In addition, they have in commun that a class can use a set of interfaces for

specifying a set of operations.

Stereotype Base

Class

Parent Meta-

attributes

Description

<<Aspect>> Class

N/A None An aspect specifies the structure

and behaviour o fan architectural

element from a determined concern.

<<metaclass>>
class

<<stereotype>>
aspect

<<metaclass>>
class

<<stereotype>>
aspect

Figure 25 The stereotype <<aspect>> extends class

 128

5.4 The UML Profile for the distribution Model

This section includes the concepts of the distribution aspect and replication aspect to the

PRISMA profile. In the following, the inclusion of both aspects is explained in detail.

5.4.1 Distribution Aspect

To define the necessary primitives of the distribution aspect a stereotype called

<<distribution aspect>> has been defined.

The base class of the stereotype <<distribution aspect>> (see Figure 26) which is

associated to the concept of the distribution aspect of PRISMA is the metaclass UML class. In

addition the parent of the stereotype <<distribution aspect>> is the stereotype aspect

<<aspect>> of the PRISMA model. This is due to the fact that a PRISMA distribution aspect

consists of the same parts of a PRISMA aspect with attributes, services, valuations,

constraints, preconditions, transactions and protocols. Some constraints are specified for the

distribution aspect. The distribution aspect must have a PRISMA attribute called location. In

addition, the distribution aspect has a meta-attribute called mobility. If the meta-attribute

mobility has a value not equal to “0” then the distribution aspect must have a PRISMA service

called move. The explanation is described in Table 8.

Table 8 The <<distribution aspect>> stereotype

Stereotype Base

Class

Parent Meta-

attribute

Description Constraints

<<Distribution

Aspect>>

Class <<aspect>> mobility The

<<Distribution

Aspect>> is an

aspect that is

used to model

PRISMA

architectural

elements that

are distributed.

1) A distribution aspect

must have a location

PRISMA attribute.

OCL Context

at.oclIsKindOf(Distribu

tion Aspect) implies

at.attributes

 forAll(o

|at.contect.attributes

 exists (a

|a.attribute.name =

location))

2)A service move shall

129

Stereotype Base

Class

Parent Meta-

attribute

Description Constraints

not exist if mobility=0.

OCL Context

at.oclIsKindOf(Distribu

tion Aspect) &

at.oclIsTypeOf

(mobility) & mobility=0

implies

at.operation forAll

(o |

at.contect.operation

does not exists (op |

o.operation.name

=move))

<<stereotype>>
aspect

<<stereotype>>
Distribution Aspect
mobility

<<stereotype>>
aspect

<<stereotype>>
Distribution Aspect
mobility

Figure 26 The <<Distribution Aspect>> stereotype extends <<aspect>>

The mobility meta-attribute of the stereotype <<distribution aspect>> is defined to indicate

when a distribution aspect has a mobile behaviour. The value of the meta-attribute can have

the values 0,1,2 and 3. When the value of mobility is 0, a service move in the distribution

aspect does not exist. When the value of mobility is 1 then the distribution aspect has an in

move. When the value is 2, an out move is specified and when the value is 3 both in move and

out move exist in the template of the distribution aspect. This is indicated in detail in Table 9.

Table 9 The mobility meta attribute

 130

Meta-

Attribute

Description Constraints

mobility The mobility meta-attribute is

used when the architectural

element is either mobile=”1”

or affects on the mobility of

the others= “2” or both =”3”.

1) If the mobility meta-attribute is set to 1 then

the move operation will be an “in”.

OCL Context

at.oclIsKindOf(Distribution Aspect) &

at.oclIsTypeOf (mobility) & mobility=1 implies

at.operation forAll (o |

at.contect.operation exists (op |

o.operation.name =in move))

2) If the mobility meta-attribute is set to 2 then

the move operation will be an “out”.

OCL Context

at.oclIsKindOf(Distribution Aspect) &

at.oclIsTypeOf (mobility) & mobility=2 implies

at.operation forAll (o |

at.contect.operation exists (op |

o.operation.name =out move))

3) If the mobility meta-attribute is set to 3 then

the move operation will be an “in” and an

“out”.

OCL Context

at.oclIsKindOf(Distribution Aspect) &

at.oclIsTypeOf (mobility) & mobility=3 implies

at.operation forAll (o |

at.contect.operation exists (op |

o.operation.name =in move) &

(op|o.operation.name = out move))

131

5.4.2 Replication Aspect

To define the necessary primitives of the replication aspect three stereotypes have been

defined: <<replication aspect>>.

The base class of the stereotype <<replication aspect>> (see Figure 26) which is

associated to the concept of the replication aspect of PRISMA is the metaclass UML class. In

addition the parent of the stereotype <<replication aspect>> is the stereotype aspect

<<aspect>> of the PRISMA model. This is due to the fact that a PRISMA replication aspect

consists of the same parts of a PRISMA aspect with attributes, services, valuations,

constraints, preconditions, transactions and protocols. Some constraints are specified for the

replication aspect. The replication aspect must have a PRISMA service called replicate. In

addition, the replication aspect has a meta-attribute called replicable to specify the replicable

behaviour. The explanation is described in Table 10 and in Figure 27 the stereotype

<<replication aspect>> is shown graphically.

Table 10 The <<replication aspect>> stereotype represented in a tabular way.

Stereotype Base

Class

Parent Meta-

Attributes

Description Constraints

<<Replication

Aspect>>

Class <<aspect>> replicable The

<<Replicatio

n Aspect>>

is an aspect

that is used

to model

PRISMA

architectural

elements

that can be

replicated.

1) A replication

aspect should not

have a “0” value for

the meta-attribute

replicable.

OCL Context

at.oclIsKindOf(Replic

ation Aspect) &

at.oclIsTypeOf

(replicable) implies

 replicable!=0

2) A service replicate

should be defined for

each value of

replicable.

 132

<<stereotype>>
Replication aspect

<<stereotype>>
Aspect

<<stereotype>>
Replication aspect

<<stereotype>>
Replication aspect

<<stereotype>>
Aspect

Figure 27 The stereotype <<replication aspect>> extends the stereotype
<<aspect>>

The replicable meta-attribute of the stereotype <<replication aspect>> is defined to

indicate when a replication aspect has a replicable behaviour. The value of the meta-attribute

can have the values 1,2 and 3. When the value of replicable is 1 then the replication aspect

has an in replicate. When the value is 2, an out replicate is specified and when the value is 3

both in replicate and out replicate exist in the template of the replication aspect. This is

indicated in detail in Table 11.

Table 11 the replicable meta-attribute

Meta-

Attributes

Description Constraints

replicable The replicable meta-

attribute is used when the

architectural element can

either be replicated=”1” or

can replicate an external

architectural element = “2”

or both =”3”.

1) If the replicable meta-attribute value is set to

1 then the replicate operation will be an “in”.

OCL Context

at.oclIsKindOf(Replication Aspect) &

at.oclIsTypeOf (replicable) & replicable=1

implies

at.operation forAll (o |

at.contect.operation exists (op |

o.operation.name =in replicate))

133

Meta-

Attributes

Description Constraints

2) If the replicable meta-attribute value is set to

2 then the replicate operation will be an “out”.

OCL Context

at.oclIsKindOf(Replication Aspect) &

at.oclIsTypeOf (replicable) & replicable=1

implies

at.operation forAll (o |

at.contect.operation exists (op |

o.operation.name =out replicate))

3) If the replicable meta-attribute value is set to

3 then the replicate operation will be an “in” and

an “out”.

OCL Context

at.oclIsKindOf(Replication Aspect) &

at.oclIsTypeOf (replicable) & replicable=3

implies

at.operation forAll (o |

at.contect.operation exists (op |

o.operation.name =in replicate) &

(op|o.operation.name = out replicate))

5.5 Summary and Conclusions

This chapter has presented a first step for defining a graphical notation for the PRISMA

distribution model. Two UML stereotypes have been defined: the <<distribution aspect>>

stereotype and the <<replication aspect>>. The stereotypes have their proper meta-attributes

that determine some of the services the aspects can provide. To model the aspects the UML

class diagram is going to be used.

 134

In the future, we would like to use the UML deployment diagrams to represent the

deployment of the instances of the architectural elements in different locations. The graphical

notation will be used by the analysts to model the distributed software architectures using a

developed CASE tool. In this way, the analysts do not have to learn the PRISMA language

instead they can easily use visual diagrams.

CHAPTER 6. CONCLUSIONS AND

FURTHER WORK
As a conclusion, this chapter sums up the main contributions of the work, scientific

publications and gives some suggestions for further work.

6.1 Summary of the Contributions

The research of this work has been motivated by the observation that although

Architecture Description Languages (ADL’s) were initially developed in order to describe

software architectures of distributed systems, the ADL’s do not support constructors for

defining distributed, mobile and replicable software architectures. Therefore, the most original

contribution of the work is the definition of the primitives to describe software architectures of

distributed, mobile and replicable software systems at a conceptual level.

The PRISMA architectural model approach which integrates the aspect oriented software

development and component based software development has been the context of this

research. This work has included the necessary primitives to enable PRISMA to become a

model to describe complex software architectures of dynamic distributed systems. A

distribution that describes the dynamic location of the architectural elements has been included

with its properties to the PRISMA metamodel. In addition, a replication aspect has also been

added to the set of possible aspects of a PRISMA architectural model by also adding its

characteristics to the PRISMA metamodel. Also, the attachments and binding links relations

that are essential to define systems and architectural models are extended to become location

aware and become the communication channels that enable remote calls between the

distributed architectural elements.

The primitives necessary to describe distributed, mobile and replicable architectural

elements and architectural models have been incorporated to the PRISMA ADL at the two

levels of abstraction: at the type definition level and at the configuration level. To use PRISMA

 136

ADL separated into these two levels of abstraction provides benefits in specifying distributed

systems. Thus at the type definition level the distribution, mobile and replicable properties can

be reused due to the storage of the aspect types in the PRISMA libraries and due to the

externalization of the weaving from the distribution and replication aspects. In addition, the

configuration level enables to give the specific properties of the distributed systems at

execution time depending on the topology of the software architecture.

Next, we have presented some distribution patterns that provide the analyzer with some

guidelines to apply to its distributed systems using the PRISMA model. The patterns describe

situations in which the mobility and replication of the architectural elements are recommended

in order to prevent fault tolerance problems, to adapt to new changes to the requirements and

to have an efficient performance at run time. The patterns have been structured in a template

to facilitate their appliance and reusability in the different participants of the patterns.

Finally, it has been worked on a UML profile to present all the introduced concepts. This is

to permit the modelling of the PRISMA architectural models with the necessary primitives that

enable it to describe software architectures of distributed software systems graphically.

As a result of this work, the PRISMA architectutral model becomes a framework to

describe distributed systems at an analysis and design level (conceptual level).

6.2 Related Publications

This work is based on a set of research publications. The following international and

national publications were obtained:

• Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Elena Navarro. Designing

Software Architectures with an Aspect-Oriented Language, Journal on Aspect

Orientation, ISSN 1548-3851. (To appear)

• Ali, N.H., Perez J., Ramos I. “High Level Specification of Distributed and Mobile

Information Systems”, Proceedings of Second International Symposium on

Innovation in Information & Communication Technology ISIICT 2004, Amman,

Jordan, 21-22 April, 2004.

• Ali, N.H., Silva J., Jaen, J.,Ramos I., Carsi, J.A., and Perez J. Mobility and

Replicability Patterns in Aspect-Oriented Component-Based Software

Architectures. Proceedings of 15th IASTED, Parallel and Distributed Systems,

Acta Press (Marina del Rey, C.A., USA, November 2003), p 820-826.

• Nour H. Ali, Jennifer Pérez, José Ángel Carsi, Isidro Ramos. Aspect Reusability

in Software Architectures. Poster in the 8th International Conference of Software

Reuse(ICSR), Madrid , Spain, Julio, 2004.

137

• Perez J., Hussein N., Ramos I., Pastor J.A., Sanchez P., Álvarez B. Desarrollo

de un Sistema de Teleoperación utilizando el enfoque PRISMA. ISBN.: 84-688-

3836-5, Actas VIII Jornadas de Ingeniería del Software y Bases de Datos,

JISBD, Alicante, noviembre 2003, PÁGINAS: 411-420.(short paper)

• Ali, N., Carsi, J.A., Ramos, I. Analysis of a Distribution Dimension for PRISMA.

Actas Jornadas de Ingeniería del Software y Bases de Datos, JISBD, Malaga. (

Accepted as short paper)

• Silva J., Hussein N., Carsi J.A., Ramos I. El aspecto de distribución de PRISMA

ISBN.: 84-688-3836-5, Actas VIII Jornadas de Ingeniería del Software y Bases

de Datos, JISBD, Alicante, noviembre 2003, paginas 127-136.(short paper)

• Perez J., Ali N H., Ramos I., Carsi, J.A. PRISMA: Arquitecturas Software

Orientadas a Aspectos y Basadas en Componentes, AOSD workshop in

collaboration with VIII Jornadas de Ingeniería del Software y Bases de Datos,

Universidad de Extremadura Departamento de Informática Informe Técnico nº

20/2003, Alicante, November, 2003 p 27-36.

• Nour H. Ali, Josep Silva, Javier Jaén, Isidro Ramos, Jose A. Carsí, Jennifer

Pérez. Distribution Patterns in Aspect-Oriented Component- Based Software

Architectures Actas IV jornadas de trabajo de Distributed Objects, Languages,

Methods and Environments, DOLMEN, Alicante, Noviembre 2003. P: 74-80.

6.3 Further Work

In the near future the research is going to be concentrated on the appliance of the

proposed model languages and patterns to case studies, specifically in the area of the

teleoperation systems.

A fundamental complementary for the specification of the conceptual distribution patterns

to the PRISMA architectural model is the use of dependency analysis techniques and tools.

These allow the fact to identify the interdependent elements of the architectural model that can

be influenced when an architectural elements.

Another important task is to be done, is to identify and implement transformation patterns

from the PRISMA model to different distributed platforms such as .Net Remoting and CORBA.

These patterns are necessary in order to build the model compiler.

In addition, a case tool is going to be developed to incorporate textual and graphical

notation of PRISMA and patterns to enable develop the distributed applications in different

platforms and programming languages.

 138

BIBLIOGRAPHY
[1] Ahlbrecht, P., Eckstein, S., and K. Neumann, Language Constructs for

Conceptual Modelling of Mobile Object Systems: In Proc. 4th Int. Symp. on

Collaborative Technologies and Systems, Simulation Series, Orlando,

USA,2003, 121-126.

[2] Aldawud, O., Elrad, T., Bader, A. A UML Profile for Aspect Oriented Modeling,

Workshop on Aspect Oriented Programming, OOPSLA 2001.

[3] Alexander C. Notes on the synthesis of Form. Harvard University Press, 1964.

[4] Ali, N.H., Perez J., Ramos I. “High Level Specification of Distributed and Mobile

Information Systems”, Proceedings of Second International Symposium on

Innovation in Information & Communication Technology ISIICT 2004, Amman,

Jordan, 21-22 April, 2004.

[5] Ali, N.H., Silva J., Jaen, J.,Ramos I., Carsi, J.A., and Perez J. Mobility and

Replicability Patterns in Aspect-Oriented Component-Based Software

Architectures. Proceedings of 15th IASTED, Parallel and Distributed Systems,

Acta Press (Marina del Rey, C.A., USA, November 2003), p 820-826.

[6] Allen, R.J. A Formal Approach to software Architecture. PhD thesis, School of

Computer Science, Carnegie Mellon University, May 1997.

[7] Aspect-Oriented Software Development, http://aosd.net

[8] Balzer, R. Software Tech. in the 1990's: Using a new Paradigm", IEEE, 1983.

[9] Barbacci, M.R., Doubleday, D., Weinstock, C. B. and Lichota, R. W. DURRA:

An Integrated Approach to Software Specification, Modeling and Rapid

Prototyping. Technical Report CMU/SEI-91-TR-21, Software Engineering

Institute (SEI), septembre 1991

[10] Brito, I., Moreira, A. Towards a Composition Process for Aspect-Oriented

Requirements. Early Aspects 2003: Aspect-Oriented Requirements Engineering

http://aosd.net/

and Architecture Design, workshop of the 2nd International Conference on

Aspect-Oriented Software Development, Boston, USA, 17 March 2003.

[11] H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing, "Extending Activity

Diagrams to Model Mobile Systems" In Proceedings of International Conference

NetObjectDay (NODe) '02, LNCS 2591 Springer, Germany, Oct 2002, pp. 278-

293.

[12] Cardelli, L. and Gordon, A.D. Types for Mobile Ambients. Proceedings of the

26th ACM Symposium on Principles of Programming Languages, 1999. pp 79-

92.

[13] Carsí J.A., “OASIS como marco conceptual para la evolución del software”,

Tesis doctoral, Departamento de Sistemas Informáticos y Computación,

Universidad Politécnica de Valencia, ISBN 84-699-3372-8.

[14] Ciancarini, P., Mascolo, C. Software Architecture and Mobility. Proc. 3rd Int.

Software Architecture Workshop (ISAW-3), November, 1998.

[15] Clements, P., Bachmann, F., Bass L., Garlan, D., Ivers, J., Little, R., Nord, R.,

and Stafford, J. Documenting Software Architectures: Views and Beyond.

Addison Wesley, 2002.

[16] Components- The Future of Software Engineering? The SI-SE 10th Anniversary

Symposium. March 18-19, 2004, Zurich.

[17] CORBA Official Web Site of the OMG Group: http://www.corba.org/

[18] Correas, J. and Bueno, F. A Configuration Framework to Develop and Deploy

Distributed Logic Applications: ICLP01 Colloquium on Implementation of

Constraint and Logic Programming Systems, Cyprus, 2001.

[19] DeRemer, F. and Hans, H.K. Programming-in-the-large versus programming-in-

the-small. IEEE Transactions on Software Engineering, SE-2(2), June, 1976, p

80-86.

[20] Eliëns, A. Principles of Object-Oriented Software Development. Addison-Wesley

(2000), ISBN 0-201-39856-7.

[21] Formal Methods for Software architectures. Third International School on Formal

Methods for Design of Computer, Communication and Software Systems:

Software Architectures, SFM 2003 Bertinoro, Italy, September 2003, Advanced

Lectures. Marco Bernardo and Paola Inverardi(Eds), ISBN 3-540-20083-5, ISSN

0302-9743.

[22] Gamma, E., Helm, R., Johnson, R. and Vlissides J. et al., Design Patterns:

Elements of Reusable Object-Oriented Software Addison Wesley, 1995. ISBN

0201633612.

http://www.corba.org/

141

[23] Grau A., “Computer-Aided validation of formal conceptual models”, PhD. Thesis

Institute for Software, Information Systems Group, Technical University of

Braunschweig, March 2001.

[24] Gruhn, V., Schafer, C. An Architecture Description Language for Mobile

Distributed Systems. Software Architecture: First European Workshop, EWSA

2004, St Andrews, UK, Springer-Verlag Heidelberg ISSN: 0302-9743, ISBN: 3-

540-22000-3, May 21-22, 2004, p 212-218.

[25] Grundy, J., Aspect-Oriented requirements Engineering for Component-based

Software Systems. In 4th IEEE int’1 Symp. on RE, 1999, IEEE CS Press,p 84-

91.

[26] Harel D. (1984); “Dynamic Logic”; in Handbook of Philosphical Logic II, editors

D.M. Gabbay, F. Guenthner; pp.497-694, Reidel.

[27] Harel D. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8(3):231-274, 1987.

[28] Herrero, J.L. Proposal of a Platform, Language and Design, for the Development

of Aspect Oriented Applications.(In Spanish)P.H.D. Thesis, Extremadura, Spain,

2003.

[29] Jaén, J. and Ramos, I. A Conceptual Model for Context-Aware Dynamic

Architectures: 23rd International Workshop on Distributed Auto-adaptive and

Reconfigurable Systems, in conjunction with ICDCS2003, Providence, Rhode

Island, USA, 2003, p 138-146.

[30] Kaveh, N.,Emmerich, W. “Validating Distributed Object and Component

Designs”, Third International School on Formal Methods 2003, LNCS, Bertinoro,

Italy, September 2003, pp. 63-91.

[31] Kiczales, G., Hilsdale, E., Huguin, J., Kersten, M., Palm, J., Griswold, W.G. “An

Overview of AspectJ”, Proceedings of the European Conference on Object-

Oriented Programming, Springer-Verlag, 2001.

[32] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,

Irwin, J. "Aspect-Oriented Programming". In proceedings of the European

Conference on Object-Oriented Programming (ECOOP), Finland. Springer-

Verlag LNCS 1241. June 1997.

[33] Letelier P., Sánchez P., Ramos I., Pastor O. OASIS 3.0: "Un enfoque formal

para el modelado conceptual orientado a objeto". Universidad Politécnica de

Valencia, SPUPV -98.4011, ISBN 84-7721- 663-0, 1998.

[34] Lime Team. Lime Web page, http://lime.sourceforge.net/

http://lime.sourceforge.net/

[35] Lopes, C. D. “A Language Framework for Distributed Computing” Ph.D.

Dissertation, College of Computer Science, Northeastern University, Boston,

1997.

[36] Lopes, A., Fiadeiro J.L. and Wermelinger, M. "Architectural Primitives for

Distribution and Mobility", 10th Symposium on Foundations of

Software Engineering, SIGSOFT FSE 2002, p 41-50.

[37] Luckham, D. C. and Vera, J. An Event- Based Architecture Definition Language.

IEEE Transactions on Software Engineering, 21(9):717–734, September, 1995.

[38] Magee, J., Dulay, N., Eisenbach S. and Krammer, J. Specifying Distributed

Software Architectures: Proc. of the 5th European Software Engineering

Conference (ESEC 95), Sitges, Spain, 1995, 137-153.

[39] Magee, J., Tseng, A., Kramer, J. Composing Distributed Objects in CORBA

Proceedings of the Third International Symposium on Autonomous

Decentralized Systems, Berlin Germany, 1997, p 257-263.

[40] Mascolo, C. MobiS: A Specification Language for Mobile Systems.Proc. 3rd Int.

Conf. on Coordination Models and Languages, 1999.

[41] Medvidovic, N. and Rakic, M. Exploiting Software Architecture Implementation

Infrastructure in Facilitating Component Mobility. In Proceedings of the Software

Engineering and Mobility Workshop, Toronto, Canada, May 2001.

[42] Medvidovic N., Taylor R.N., “A classification and Comparison Framework for

Software Architecture Description Languages”, IEEE Transactions of SW

Engineering, Vol. 26, nº 1, January 2000.

[43] Microsoft .Net Remoting : A Technical Overview,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dndotnet/html/hawkremoting.asp

[44] Molina, P.J. Especificación de Interfaz de Usuario: De los Requisitos a la

generación automàtica. Tesis Doctoral. Marzo de 2003.

[45] Murphy, A.L., Picco G.P. and Roman, G.-C. LIME: A Middleware for Physical

and Logical Mobility. In F. Golshani, P. Dasgupta, and W. zhao, editors, Proc of

the 21st Int. Conf. On distributed Computing Systems (ICDCS-21), May 20001, p

524-533.

[46] F. Muscutariu and M.-P. Gervais (2001), On the Modeling of Mobile Agent-

Based Systems, In Proceedings of 3rd IEEE/ACM International Workshop on

Mobile Agents for Telecommunication Applications (MATA'01), Montreal,

Canada, Lecture Notes in Computer Science n°2164, Springer Verlag, pp219-

234

143

[47] Nana, L., Kermarrec Y., and Pautet, L. GNATDIST: a configuration language for

distributed Ada 95 applications: ACM Tri Ada conference, Philadelphia, USA,

1996, 63-72.

[48] Taft D.K. What is Bill Gates Thinking? Eweek : Enterprise News and Reviews.

30 March 2004. http://www.eweek.com/article2/0,1759,1556075,00.asp

[49] Virginia C. de Paula, G. R. Ribeiro Justo and P. R. F. Cunha: Specifying

Dynamic Distributed Software Architectures, XII Brazilian Symposium on

Software Engineering, BCS Press, October, 1998.

[50] Oblog – Object Logic. “Oblog Software”, Oblog Software S.A. Lisboa, Portugal.

URL: http://www.info.fundp.ac.be/~phe/2rare/spd.html.

[51] Pastor O. Et al, OO-METHOD: A Software Production Environment Combining

Conventional and Formal Methods, Procc. of 9th International Conference,

CaiSE97, Barcelona, 1997.

[52] Perez J., Ali N H., Ramos I., Carsi, J.A. PRISMA: Arquitecturas Software

Orientadas a Aspectos y Basadas en Componentes, AOSD workshop in

collaboration with VIII Jornadas de Ingeniería del Software y Bases de Datos,

Universidad de Extremadura Departamento de Informática Informe Técnico nº

20/2003,Alicante, November,2003 p 27-36.

[53] Pérez, J., Ramos, I. Oasis como Soporte Formal para la Definición de Modelo

Hipermedia Dinámicos, Distribuidos y Evolutivos , Informe Técnico DSIC-

II/22/03, Universidad Politécnica de Valencia, Octubre 2003

[54] Pérez, J., Ramos, I., Jaén, J., Letelier, P., Navarro, E. PRISMA: Towards

Quality, Aspect Oriented and Dynamic Software Architectures: 3rd IEEE

International Conference on Quality Software (QSIC 2003), Dallas, Texas, USA,

November 2003, p 59-66.

[55] Pérez, J., Ramos, I., Carsí Cubel, J.A. Compilador para la Generación

Automática del Metanivel de una Especificación mediante la Reificación de

Propiedades del Nivel Base , Informe Técnico DSIC-II/23/03 Universidad

Politécnica de Valencia, octubre 2003

[56] Pinto, M., Fuentes, L., Fayad, M.E., Troya, Separation of coordination in a

dynamic aspect oriented framework, Proceedings of the 1st international

conference on Aspect-oriented software development, 2002 , Enschede, The

Netherlands, Pages: 134 – 140

[57] Popovici, A., Gross, T. and Alonso, G. Dynamic Weaving for Aspect-Oriented

Programming. In proceedings of the 1st international conference on Aspect-

oriented software development.(Enschede The Netherlands, April 2002)

http://www.eweek.com/article2/0,1759,1556075,00.asp
http://www.info.fundp.ac.be/~phe/2rare/spd.html

[58] Poseidon website: http://www.gentleware.com/

[59] Rammer, I. Advanced .Net Remoting. Apress; 1 edition (April 5, 2002), ISBN:

1590590252.

[60] Randell,B.A., and Lhotka, R. VISUAL STUDIO 2005 Bridge the Gap Between

Development and Operations with Whitehorse. MSDN Magazine The Microsoft

Journal for Developers.

http://msdn.microsoft.com/msdnmag/issues/04/07/whitehorse/default.aspx

[61] Rashid, A., Moreira, A., Araujo, J. Modularisation and composition of Aspectual

Requirements. In proceedings of the 2nd international conference on Aspect-

oriented software development(Boston Massachusetts, March 2003)

[62] Rational Rose: http://www-306.ibm.com/software/awdtools/developer/rosexde/

[63] Riehle D. and Zullighoven, H. Understanding and Using Patterns in Software

Development, 1996.

[64] Suzuki, J., and Yamamoto, Y. Extending UML with Aspects: Aspect Support in

the design phase. 3rd Workshop on Aspect-oriented Programming in European

Conference on Object Oriented Programming(ECOOP), 1999,299-300.

[65] Soares, S. and Borba, P. PaDA: A Pattern for Distribution Aspects: In Second

Latin American Conference on Pattern Languages Programming —

SugarLoafPLoP, Itaipava, Rio de Janeiro, Brazil, 2002, 87-99.

[66] Soares, S., Laureano, E. and Borba, P. Implementing Distribution and

Persistence Aspects with AspectJ: Proceedings of the 17th ACM Conference on

Object-Oriented programming systems, languages, and applications,

OOPSLA'02, Seattle, WA, USA,2002, 174-190

[67] Suvee, D., Vanderperren W., Jonckers, V. JasCo: an Aspect-Oriented approach

tailored for Component Based Software Development. In proceedings of the 2nd

international conference on Aspect-oriented software development(Boston

Massachusetts, March 2003)

[68] Szyperski, C., Component software: beyond object-oriented programming, (New

York, USA: ACM Press and Addison Wesley, 2002).

[69] Unified Modelling Language UML 2.0: http://www.omg.org/technology/uml/

http://www.omg.org/technology/uml/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

