
Goals and Quality Characteristics: Separating Concerns
∗

∗ This work has been funded by the Spanish CICYT project DYNAMICA TIC2003-07776-C02-02

Elena Navarro

Computer Science Department

University of Castilla-La Mancha

Avda. España S/N, Albacete, Spain

enavarro@info-ab.uclm.es

Patricio Letelier, Isidro Ramos

Department of Information Systems and Computation

Polytechnic University of Valencia

Camino de Vera s/n, Valencia, Spain

{letelier, iramos}@dsic.upv.es

Abstract

Software Requirements Specification (SRS) organization

for complex and/or large systems have to do with several

not faced challenges until the moment. This organization

is a key factor to facilitate the quality assurance of the

SRS, regarding features as: correctness, completeness,

consistency and modifiability. Organization is also

crucial for an effective exploitation of the SRS when

elaborating other related or derived artefacts. Although

there is a consensus about SRS content, this is not

applicable to the organization. Nevertheless, it is evident

that depending on the system, their stakeholders and the

activities to perform with the SRS, the relevant criteria for

SRS organization and presentation can be different.

Additionally, another of the main problems to be solved is

related to the crosscutting of requirements that produces

tangled specifications. This work faces these issues: the

organization of SRS by applying Aspect Oriented

techniques to properly manage the crosscutting. A Goal

Oriented approach for requirements allows us to

establish traceability from software goals to specific

requirements and from the latter to operationalizations

that are realized as software components. In this work, we

present an integration of aspect and Goal Oriented

approaches, to properly manage the SRS organization

and presentation. Furthermore, our proposal uses the

standard ISO/IEC 9126 as the starting point to organize

goals and requirements. ATRIUM, a methodology to

concurrently define requirements and software

architecture, provides the setting for our proposal.

1. Introduction

IEEE 830-1998 [11] recommendations are the

milestone concerning the contents which are mandatory in

a Software Requirements Specification (SRS). This

standard suggests several possible organizations for

specific software requirements. Nevertheless, when the

amount of requirements and/or the complexity are

considerable, those suggestions are not enough.

Requirements organization and presentation are crucial to

facilitate their maintenance and ensure other desirable

features such as: correction, completeness, consistency

and traceability. Along the requirements elicitation and

specification process, several stakeholders are involved

(both from the customer and technical side) every one

with their own interests and views of the system, which

ought to be rightly represented and reconciled in the SRS.

A requirement is a capacity that software should

exhibit or a condition that should be met. This capacity or

condition can be expressed at different abstraction or

detail levels. Concretely, we distinguish two levels: goals

and requirements. Goals allow one to establish, by means

of refinement and composition processes, a derivation

graph from software interests or goals until specific

requirements. On the other hand, requirements are

detailed enough as to be assigned to a software component

and lately be verified. Goal Oriented Requirements

Engineering [13] employs this strategy to perform this

refinement from goals until requirements and their

subsequent operationalization in software elements.

In the literature, different paradigms cope with the

separation of concerns of a system in order to provide

support for evolution adaptability, comprehensibility, etc.

These concerns can range from non-functional features, as

security or fault tolerance, to functional features. Aspect

Oriented Software Development (AOSD) [1] is one of

these approaches. AOSD provides a set of techniques that

allow managing those interests that appear scattered along

the system and crosscut several elements. AOSD identifies

these concerns realizing them as aspects and managing

them explicitly.

In the AOSD context, several proposals have been

introduced at different abstraction levels, both during

implementation [12] and design [21] that define an aspect

as an additional constructor of the language. It is

associated to the constructor “class” to manage the

crosscutting that can appear in the methods specification

for a class. Several works have also been proposed at the

requirements level as Aspect Oriented Requirements

Engineering (AORE) [20]. In this proposal, an aspect is a

requirement which is related to a set of other

requirements, but that is separately specified. By means of

a technique known as weaving, it manages this

crosscutting.

The aim of this work is to present our proposal to

organize software requirements, by integrating Aspect

Oriented techniques within a Goal Oriented approach for

requirements, as we previously sketched in [17].

Furthermore, the ISO/IEC 9126 [10] standard is used as a

starting point to define the concerns. ATRIUM [16], a

methodology to concurrently define requirements and

software architecture, provides the setting for our

proposal.

The reminder of this work is organized as follow.

Section 2 briefly describes the ATRIUM methodology.

Section 3 introduces the ISO/IEC 9126 standard and how

it is used in our proposal. Section 4 presents in detail the

set of tasks that drive the goals model definition. The way

we apply the set of tasks to a case study is shown in

section 5. Some related works are described in section 6.

Eventually, the achieved conclusions and future works

round up the work.

2. ATRIUM: Requirements and Software

Architectures

ATRIUM is a methodology oriented to the concurrent

definition of Software Architectures (SA) and

Requirements. In ATRIUM, decisions at architectural

level are made to satisfy specific software requirements.

With this aim, ATRIUM provides the analyst with

guidance, along an iterative process, from an initial set of

user/system needs until the instantiation of the

architecture, specified by means of a PRISMA model

[18]. PRISMA is an architecture description language that

allows us to define dynamic architectures.

Goals
Model
Goals
Model

Define
Goals

Define
Goals

User/System NeedsUser/System Needs

Define
Scenarios

Define
Scenarios

Scenarios
Model

Scenarios
Model

Specify
Collaborations

Specify
Collaborations

Proto-
Architecture

Proto-
Architecture

Architectural
Styles

Architectural
Styles

Instanced
PRISMA
Model

Instanced
PRISMA
Model

CompilationCompilationGeneration
Patterns

Generation
Patterns

FormalizationFormalization Formal
Model

Formal
Model

Interaction
Patterns

Interaction
Patterns

Derivation
Rules

Derivation
Rules

Figure 1 ATRIUM: Activities and Artifacts

ATRIUM entails five activities (Figure 1) to be iterated

on in order to define and refine the different artifacts and

allow the analyst to reason about partial views, both of

requirements and of architecture. The Define Goal activity

(see section 4) allows identifying the different concerns of

the software and the crosscutting between them. These

concerns are candidate to be classified as aspects, in the

PRISMA specification, and realize them through aspects

integrated into components and/or connectors.

3. ISO/IEC 9126: Selecting and Identifying

Concerns

Quality criteria, used for the software products

assessment, are highly related to the requirements

specified in their SRS. This means a practical binding

with the global organization of the SRS in order to

facilitate the subsequent evaluation of the software

quality. In this sense, the ISO/IEC 9126 standard is an

important reference as software quality model by defining

a set of features that can be required of quality software.

This reason makes the ISO/IEC 9126 especially suitable

as taxonomy for concerns. It provides an initial framework

to elicit and organize goals and requirements. In this way,

as the informal software needs are elicited, they can be

analyzed, broken down and organized. This allows

managing the specification crosscutting, by reducing or

removing other drawbacks such as: redundancy,

inconsistencies, etc. At the same time, weaving

relationships can be defined in order to re-establish a

tangled representation whenever it is needed.

ISO/IEC 9126 determines three software quality

aspects: process quality, product quality and product in

use quality. The main aim is just the latter, i.e., to notice

the product quality through the effect that its use causes.

The quality in use depends on or is influenced by the

internal and external characteristics of the software

product. These characteristics are affected by the software

construction process. With regard to the specific

requirements, described in the SRS, we are interested in

the characteristics defined for the software product quality

and for the quality in use. These characteristics are listed

in Table 1.

We have to notice that from the software requirements

perspective this taxonomy goes beyond the traditional

classification of functional and non-functional

requirements which is not a meaningful contribution to the

requirements organization. In fact, most of the typical

functional requirements can be set with the suitability sub-

characteristic. On the other hand, the software product

capacity to satisfy the standards, conventions or

regulations are broken down as sub-characteristics of type

Figure 0 Unfolding a Software Specification

“compliance” below each quality software product sub-

characteristic. Although the ISO/IEC 9126 provides us

with a wide set of concerns, this set can be extended if

needed. In this case, several alternatives arise when we

apply our proposal:

a) Considering a new dimension for organizing

goals/requirements, additional to the taxonomy

proposed by ISO/IEC 9126. This option could be of

interest whenever the additional characteristics are as

relevant as those already considered and whether the

crosscutting with them could be high.

b) Including a new characteristic/sub-characteristic for

extending the taxonomy. This alternative would be

recommended when the aspects which are dealt with

are not as relevant as those considered and/or it is not

expected that the crosscutting could be so high.

c) Dealing with this element as an attribute of the

goal/requirement. This option is suggested when it is

coped with aspects which are not so relevant (they are

neither exactly goals nor requirements) or do not

involve an important crosscutting. However, they are

particularly interesting to group and present

goals/requirements.

Table 1 Quality Characteristics of the ISO/IEC 9126

Quality Type Characteristic Sub- Characteristic

suitability

accuracy

interoperability

security

functionality

compliance

maturity

fault tolerance

recoverability
reliability

compliance

understandability

learneability

operability

attractiveness

usability

compliance

time behaviour

resourse utilisation efficiency

compliance

analysability

changeability

stability

testeability

maintainability

compliance

adaptability

installability

co-existence

replaceability

Software Product Quality

portability

compliance
effectiveness

productivity

safety
Quality in use

satisfaction

The IEEE 830-1998 offers several criteria and

guidelines to organize specific requirements. It recognizes

that there is no an optimum organization to be applicable

to every system. Between the mentioned organization

criteria are: operation system mode, user type, problem

entities, system services, stimulus, answer and/or

functions hierarchies. Therefore, as it is recommended by

the c) alternative, those elements can be dealt as attributes

of goals/requirements instead of extending the taxonomy.

In this way, it is possible to offer a view related to the

joins based on these elements, although they are not

elements of the initial taxonomy.

For instance, we could deal with the section “logic

requirement of the database” (included in the IEEE 830-

1998) as an aditional dimension (called data). Figure 2

illustrates the framework extension with new dimensions.

4. Goals Model and Concerns of the system

Both identification and specification of the different

concerns, and their possible crosscutting, are addressed,

in this work, with the definition of the tasks described in

Figure 3, which integrate the activity 1. The output of this

activity is the Goals Model, which was previously

described in [15]. Its conception was influenced by the

NFR Framework [3] and the KAOS proposal [4], although

it integrates both functional and non-functional

requirements. Furthermore, it plays an important role for

the aspect identification as we previously stated in [17].

The Goals Model allows one to specify not only goals,

requirements and operationalizations but also the

crosscutting which can appear. For the Goals Model

construction, the ISO/IEC 9126 quality model, described

above, is used as an instantiable framework, providing the

analyst with an initial description of the set of concerns of

the system.

4.1. Defining the Goals Model

Figure 3 establishes the workflow for the Goals Model

elaboration along with the input artifacts needed for its

realization. Although Figure 3 shows only a sequential

flow to apply the tasks, in practice, its application is

iterative. Involved tasks, in the Goals Model, are run with

every new identified or selected goal.

The first task deals with the Identification/Selection of

Goals. As we can observe in Figure 3 the standard

ISO/IEC 9126 is an input for this task. This model

provides an initial view of the concerns that could be

meaningful for the system. In this way, the analyst can

iteratively select what he/she considers proper and initiate

its specification and refinement. As we elicit the

requirements, it could be convenient to incorporate new

concerns to properly include additional

goals/requirements.

User/System needs are other input for this task. They

provide us with information to identify new

goals/requirements. Every goal, established by means of

this process, is aligned with the specification of concerns

determined by the ISO/IEC 9126 model, and acts as a

node for the graph definition. This will provide us with a

twofold advantage; on one hand to facilitate the

understanding of the specification, and, on the other hand,

to drive the elicitation and analysis process.

In the task Specify Goal, the attributes, that constitute

it, are not only established, such as its name, priority, etc.,

but also composition relationships (AND/OR/XOR)

among goals ([15] offers a full description of the goals

model).

When crosscutting of goals/requirements is identified,

task Specify Weaving is performed in order to establish

weaving relationships. These relationships can be

stereotyped according to the traditional AOSD weaving

mechanisms, i.e., before and after. This allows us to

express how a piece of goal/requirement specification

(from the aspect point of view) is incorporated inside

some goal/requirement specification. Other more specific

weaving relationships could be used (like in [19]), but we

suggest to do this refinement in the specific domain

context of the system.

This refinement process of goals goes on until the goal

is assignable to a system agent. At this moment, we

change from an intentional refinement to an operational

refinement, and consequently to the specification of a

requirement. Another difference between a goal and a

requirement stems from the latter ones have to be

verifiable. In this way, Identify/Specify Requirements

follows a similar process to that observed for goals,

through the definition of attributes and composition

relationships. Additionally, weaving relationships can also

be established.

After the requirement specification, the next task is

Specify Operationalization, that is, the definition of the

agent or set of agents that collaborate in its realization.

During the Goals Model construction, the

operationalization is only a description of the proposed

solution for the realization of a requirement, working this

description as an input for the ATRIUM activity Define

Scenarios. The latter cope with the whole definition of the

solution through the relevant scenario specification. It is

introduced in the Goals Model in order to allow us to

describe the relationships between that solution and the

already defined requirements in the Model. In this way,

we can denote how a solution can contribute to positively

realize a requirement and negatively to others. Thanks to

these relationships, we achieve a more exhaustive analysis

of the set of possible solutions.

5. Case Study

This section illustrates how we have applied our

proposal in the context of a real system. This work was

developed thanks to the collaboration with a group

involved in the European Project Environmental Friendly

and cost-effective Technology for Coating Removal

(EFTCoR) [5]. The main scenario of this project is the

hull maintenance operations. Mainly, it addresses

operations of coating removal, washing and re-painting of

hull of ships by using a family of robots, that either

performs different operations or the same operation but in

a different way.

These maintenance operations have a high impact both

economical and environmental. The former is related to

the time that the ship must go into the dry dock and to the

costs derived of its maintenance. The later is due to the

generated residues along the operations. Furthermore,

these processes are very hazardous for operators.

Figure 4 Teleoperation Robotic System for Hull

Maintenance Operations

Figure 3 Workflow to specify goals and requirements

 The identified robotic teleoperation platform [5] is

integrated by the next subsystems (illustrated in Figure 4):

a) Monitoring System: encompasses the functionality

concerning to the informational and managerial needs

related to ship maintenance operation that is going to

be accomplished.

b) Vision System: allows the hull inspection of the

working areas and provides information for

automatically moving the robotic devices along the

hull.

c) Recycling System: retrieves the residues from the

working areas and recycles them.

d) Robotic Devices Control Unit: interacts with the others

robotic devices with the aim of getting the needed

information to control the different devices

(positioning systems and cleaning tools) to be used in

the maintenance tasks. It is accomplished according to

the commands introduced by the operator.

Our case study focuses on the Robotic Devices Control

Unit (RDCU, Figure 4). Its architectural definition is

highly relevant because the fact that several constraints

have to be satisfied in order to allow a dynamic behavior

of the system. This dynamism allows the EFTCoR to

replace, at run time, each cleaning tools and positioning

devices. Either change or operation has to be secure,

providing a means to stop it if any damage can be

produced to the equipment, the environment or the

operator. Moreover, every operation has to be scheduled

to accomplish hard deadlines.

5.1. Specifying the Goals Model

Next, some sentences about the established needs for

RDCU, extracted from [5], are presented:
Positioning systems and tool can work simultaneously. The RDCU is
responsible of co-ordinating their actions according to their operational
states, the mission parameters, and the current state of the environment.
(1) The operational commands for positioning systems and activating the
tool can be easily and efficiently issued to the system.
(2)The system should react to such commands efficiently. In some cases,
the execution time of the commands should be smaller than a given
deadline.
(1)The possibility of using different coating removal technologies
(blasting, water pressure). Though the chosen technology for the EFTCoR
project is blasting, the RDCU should be open to incorporate cleaning tools
based on other technologies.
(2) The possibility of using the system for different maintenance tasks,
including at least the fresh water washing before blasting and the painting
after blasting.
(3) The possibility of using different positioning systems and different
combinations of primary and secondary positioning systems.
(4) The possibility of using different tools for the same or different
processes (already considered in the first point).

From the previous statements we can observe how the

crosscutting appears in the specification, as for instance

the goals related to Efficiency and Adaptability. Both

goals are applied to other goals as ControlPositioning or

ControlTools. When the task Identification/Selection of

Goals was applied by using the previous sentences as

input, it generated as a result the next goals list that

Portabilit

Replaceability Adaptability

Functionality

Suitabilit

Efficiency

Time behaviour

AdaptabilityWorkin
Environments

AdaptabilityHull
MaintenanceOperatio

CoordinateDevices

ControlPossitioning ControlTools

PerformanceOperatio PerformanceStat

TimeControlPossitioning

TimeControlTools

<<weaving>>

<<weaving>>

<<weaving>>

AND
AND

AND

AND

AND

<<weaving>>

<<refinement>

<<refinement>>

<<refinement>>

<<refinement>>
<<refinement>>

<<refinement>>

<<refinement>
<<refinement>>

Figure 4 (Partial View of) Goals Model for EFTCoR

appears on Table 2 (more details about the applicable

attributes can be found in [15])

The graph on Figure 4 shows (part of) the Goals Model

where the refinement of goals from Table 2 is reviewed.

In this way, we observe how Portability, Functionality

and Efficiency are some of the selected characteristics to

become concerns for the EFTCoR system. Furthermore,

this figure shows us some of the relationships of

refinement that were established. For instance, the AND

relationship for the goals AdaptabilityWorking-

Environment and AdaptabilityHullMaintenaceOperation

that was introduced to satisfy Adaptability. On the other

hand, a weaving relationship has been established between

AdaptabilityWorkingEnvironment and Control-

Possitioning.

Table 2 (Partial) Description of Goals for EFTCoR
GOAL DESCRIPTION
Functionality The system has to provide functions

which meet stated and implied needs
Suitability The system has to provide an

appropriate set of functions for
specified tasks and user objectives

CoordinateDevices The RDCU has to coordinate robotic
devices according to the current
mission procedure and global system
state

ControlPossitioning The RDCU has to control the
positioning devices

ControlTools The RDCU has to control the tools
attached to positioning devices
(blasting head, painting tool, etc)

Efficiency The system should use efficiently their
resources

TimeBehaviour The system should respond with
appropriate speed

PerformanceOperation The system should respond with
appropriate speed to the operation
commands

Portability The system should be able to be
transferred from one environment to
another

Replaceability The system should be able to use
different software product for the
same purpose

Adaptability The systems has to be adaptable for
different specified environments

AdaptabilityWorkingEnvironments The system operation has to be
adaptable to different working
environments

AdaptabilityHullMaintenanceOperation The system operation has to be
adaptable to different hull
maintenance operations

6. Related works

There are many works related to the management of

aspects at different abstraction levels, at implementation

as well as design level. At the requirements level, several

proposals have focused on how to identify and specify

concerns of the system. They also focus on how to

determine which concerns will be realized as aspect, in

other derived artifacts, in such a way that the closure

property [6] is satisfied.

Grundy [9] has defined a proposal called Aspect-

Oriented Component Engineering (AOCE), in order to

define and develop software components from

requirements until design, implementation and

deployment. In this proposal, components are integrated

by aspects, but there is no explicit specification about how

these aspects are a realization of the aspects at the

requirements level.

Rashid et al [20] have proposed a model for

requirements engineering that identifies the concerns at an

early stage of development, along with the requirements.

This model allows relating and establishing the impact of

these early aspects on later stages of the development.

Nevertheless, this proposal does not allow recreate the

specification to offer a better comprehension for the

validation end user.

Brito et al [2] proposal is the closest one to our

approach. It introduces a goals model, the NFR

Framework [3] concretely, to specify non-functional

requirements along with another technique, such as use

cases or viewpoints, to specify functional requirements. In

this way it extends the framework with a new type of

relationship called required concerns in order to

determine a potential crosscutting with other

requirements. However, our proposal provides the analyst

with a unique artefact to specify both kinds of

requirements. It facilitates both its use and

comprehensibility.

On the other hand, no stated proposals provide the

analyst with an initial framework which helps him/her to

identify the concerns of the system. Finally, another

significant difference is related to the uniform

management of goals/requirements, with regard to the

applicable categories for its classification. Nevertheless,

other proposals explicitly focus on the distinction between

functional and non-functional, by employing different

techniques to describe both kinds of goals/requirements.

This entails a high cost in terms of legibility and

maintainability.

Additionally, most of the Aspect Oriented requirements

proposals, such as [19, 14], apply separation of concerns

techniques after identifying the crosscutting in the

specification. In this way, they offer a solution to improve

the original specification. In our proposal, thanks to the

use of a Goal Oriented approach, that allows us to begin

the software requirement specification at a level of

concerns, we can deal with the goals and requirements

relationships detecting and managing the crosscutting

among them by using weaving relationships.

7. Conclusions and future works

In this work, we have presented a proposal to elicit and

analyse requirements that integrates Goal Oriented and

Aspects Oriented approaches. Owing to the Goal Oriented

approach, an explicit traceability is preserved from goals

towards requirements, and from the latter to the

operationalizations that realize the software components.

On the other hand, the Aspect Oriented approach allows a

smart and effective management of the crosscutting that

can appear in the SRS when goals and requirements are

tangled. By defining weaving relationships between

goals/requirements elements an optimal representation is

achieved, that can allow to recreate the original

representation whether it is needed. A workflow has been

defined that integrates both approaches, detailing a set of

tasks. It provides a guide for the elaboration and

organization of the requirements.

Another advantage that offers our proposal is the use of

the ISO/IEC 9126 as a starting point to establish the

possible concerns. Additionally, it is possible to tailor, in

terms of content, the SRS to the IEEE 830-1998 but with

meaningful advantages for elaboration and organization of

the requirement specification.

Several challenges are to be faced. One of them is

related to the development of a tool that provides our

proposal with a proper support. The flexibility for the

requirements representation, regarding several criteria, is

one of main factor in this development. With this aim, we

are exploiting the structure of characteristics as well as

using attributes which are defined for goals and

requirements.

Another point of interest, for future works, is related to

the weaving relationships. Concretely, we are concerned

with its suitability to the set of offered relationships along

with their semantic. According to this topic, the emerging

issues from the case study will facilitate its verification

and validation. Specially when, following the ATRIUM

stated process, the established weaving relationships and

the identified concerns and requirements will have

traceability to aspects in architectural artefacts.

References

[1] Aspect-Oriented Software Development,
http://www.aosd.net
[2] I. Brito, A. Moreira, “Integrating the NFR framework in a
RE model”, Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop, March 22,
2004 - Lancaster, UK in conjunction with 3rd Aspect-Oriented
Software Development Conference.
[3] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Kluwer
Academic Publishing, 2000.
[4] A. Dardenne, A. van Lamsweerde, and S. Fickas: “Goal-
directed Requirements Acquisition”. Science of Computer
Programming, 20:3-50, 1993.

[5] EFTCOR: Environmental Friendly and cost-effective
Technology for Coating Removal. European Project within the
5th Framework Program (GROWTH G3RD-CT-00794), 2003.
[6] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, H. Ossher,
“Discussing aspects of AOP”, Communications of the ACM,
Vol. 44 , Issue 10, pp. 29 – 32, October, 2001.
[7] T. Elrad, R. E. Filman and A. Bader, “Aspect-oriented
programming: Introduction”, Communications of the ACM,
Vol. 44 , Issue 10, pp. 29 – 32, October, 2001.

[8] C. Fernández, J.A. Pastor, P. Sánchez, B. Álvarez, A.
Iborra: “Co-operative Robots for Hull Blasting in European
Shiprepair Industry. Robotics and Automation Magazine
(RAM)”, special issue on Industrial Robotics Applications &
Industry-Academia Cooperation in Europe. New Trends and
Perspectives. (To appear in September 2004)
[9] J. Grundy, “Aspect-Oriented Requirements Engineering for
Component-Based Software Systems”, In Proceedings of the
IEEE International Symposium on Requirements Engineering,
June 07 - 11, 1999, Limerick, Ireland.
[10] ISO/IEC Standard 9126-1 Software Engineering- Product
Quality-Part1: Quality Model, ISO Copyright Office, Geneva,
June 2001
[11] IEEE Std 830-1998. IEEE Recommended Practice for
Software Requirements Specifications, In Volume 4: Resource
and Technique Standards, The Institute of Electrical and
Electronics Engineers, Inc. IEEE Software Engineering
Standards Collection.
[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier and J. Irwin, “Aspect-Oriented
Programming”. In the Proceedings of the European Conference
on Object-Oriented Programming, Finland. Springer-Verlag
LNCS 1241. pp. 220-242, June 1997.
[13] A. van Lamsweerde “Goal-Oriented Requirements
Engineering: A Guided Tour”, Invited Paper for 5th IEEE
International Symposium on Requirements Engineering,
Toronto, August, 2001, pp. 249-263.
[14] A. M. D. Moreira, J Araújo, I. Sofia Brito, “Crosscutting
quality attributes for requirements engineering”. In Proceedings
of the 14th international conference on Software Engineering
and Knowledge Engineering, pp. 167-174, July 15-19, 2002,
Ischia, Italy.
[15] E. Navarro, I. Ramos and J. Pérez: “Goals Model-Driving
Software Architecture”, 2nd International Conference on
Software Engineering Research, Management and Applications,
May 5-8, 2004, Los Angeles, CA, USA.
[16] E. Navarro, I. Ramos and J. Pérez: “Software Requirements
for Architectured Systems”. Proc. 11th IEEE International
Conference on Requirements Engineering, pp. 365-366,
September 8-12, 2003, Monterey, CA, USA.
[17] E. Navarro and I. Ramos, "Requirements and Architecture:
a marriage for Quality Assurance", VIII Jornadas de Ingeniería
del Software y Bases de Datos, Alicante, 12-14 Noviembre 2003
[18] J. Pérez, I. Ramos, J. Jaén, P. Letelier and E. Navarro,
“PRISMA: Towards Quality, Aspect Oriented and Dynamic
Software Architectures”, In Proceedings of the 3rd IEEE
International Conference on Quality Software, Dallas, Texas,
USA, pp. 59-66, November 6 - 7, 2003.
[19] A. Rashid, A. Moreira, J. Araújo, “Modularisation and
composition of aspectual requirements”, In the Proceedings of
the 2nd international conference on Aspect-oriented software
development, pp. 11-20, March 17 - 21, 2003, Boston,
Massachusetts.
[20] A. Rashid, P. Sawer, A. Moreira and J. Araújo, “Early
Aspects: a Model for Aspect-Oriented Requirements
Engineering”, In the Proceedings of the International
Conference on Requirements Engineering, pp. 199-202,
September 9-13, 2002, Essen, Germany.
[21] J. Suzuki and Y. Yamamoto, “Extending UML with
Aspects: Aspect Support in the Design Phase”, AOP Workshop
at ECOOP’99, Lisbon, Portugal, 1999.

